• Title/Summary/Keyword: single-layer domes

Search Result 54, Processing Time 0.033 seconds

An Experimental Study on Welded Joints for Single-Layer Latticed Domes (단층 래티스 돔의 용접 접합부에 관한 실험연구)

  • Seo, Sang-Hoon;Choi, June-Ho;Lee, Young-Hak;Kim, Hee-Cheul;Kim, Min-Sook;Lee, Sung-Min
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.161-164
    • /
    • 2008
  • Demands for space structures such as domes have increased in Korea. Generally, typical methods for connections of the space structures have technical limits in the space distances of the single latticed domes between supports. In this paper, improved welded joints for single-layer lattice domes was suggested and compared with the existing connections of the single layer latticed domes through both analytical and experimental studies.

  • PDF

A numerical investigation of seismic performance of large span single-layer latticed domes with semi-rigid joints

  • Zhang, Huidong;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.57-75
    • /
    • 2013
  • It is still inadequate for investigating the highly nonlinear and complex mechanical behaviors of single-layer latticed domes by only performing a force-based demand-capacity analysis. The energy-based balance method has been largely accepted for assessing the seismic performance of a structure in recent years. The various factors, such as span-to-rise ratio, joint rigidity and damping model, have a remarkable effect on the load-carrying capacity of a single-layer latticed dome. Therefore, it is necessary to determine the maximum load-carrying capacity of a dome under extreme loading conditions. In this paper, a mechanical model for members of the semi-rigidly jointed single-layer latticed domes, which combines fiber section model with semi-rigid connections, is proposed. The static load-carrying capacity and seismic performance on the single-layer latticed domes are evaluated by means of the mechanical model. In these analyses, different geometric parameters, joint rigidities and roof loads are discussed. The buckling behaviors of members and damage distribution of the structure are presented in detail. The sensitivity of dynamic demand parameters of the structures subjected to strong earthquakes to the damping is analyzed. The results are helpful to have a better understanding of the seismic performance of the single-layer latticed domes.

A Buckling Characteristics of Single-Layer Lattice Domes according to Section Shapes of Main Frames (The Existing Domestically-Produced Structural Steel is used as Main Frames) (단층래티스 돔의 주부재 단면형상에 따른 좌굴특성 검토 (KS규격 기성 강재 사용을 기준으로 함))

  • Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.4
    • /
    • pp.75-81
    • /
    • 2013
  • The circular hollow section is usually used for member of main frame to carry the external load in single layer lattice dome. But, the H-shaped section may be used for member of main frame since it is convenient for attaching roof panels. Single layer lattice domes have various buckling characteristics, such as the overall buckling, the member buckling, and nodal buckling. The purpose of this study is to compare buckling characteristics of single-layer lattice domes in which the H-shaped steel section as the existing domestically-produced structural steel is used as main frames to those of domes in which a circular hollow section is used as main frames.

A Study on the Unstable Behavior of Pin-connected Single-layer Latticed Domes considering Geometric Nonlinearity (기하학적 비선형을 고려한 핀접합 단층 래티스 돔의 불안정 거동에 관한 연구)

  • 권택진;김승덕;김종민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.240-247
    • /
    • 1997
  • Single-layer latticed domes, which ore consisted of slender linear elements, are able to transmit external loads to the structure by in-plane forces, therefore spatial structures can be constructed with the merit of its own lightweight. But, as external load reaches to any critical level at which each member has not material nonlinearity, the single-layer latticed dome shows unstable phenomenon. In particular, pin-connected single-layer latticed domes have much complicate unstable phenomena that are combined with nodal buckling and member buckling. Furthermore, single-layer latticed domes are very sensible to the initial imperfection which occurred inevitably in construction. In this study, we are going to grasp the characteristics of instability for the latticed dome by finite element method considering geometrical nonlinearity.

  • PDF

An Effect of Equipment-Loading on the Buckling Strength of Single-Layer Latticed Domes with Geometrical Imperfection (형상초기부정을 갖는 단층래티스돔의 좌굴내력에 관한 설비하중의 영향)

  • 박지영;정환목;권영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.55-60
    • /
    • 1994
  • The paper is aimed at investigating the buckling strength of single-layer latticed domes with the geometrically initial imperfection under the uniformly distributed vertical-loading and the partially concentrated equipment-loading. The results show that the effect of initial imperfection on the buckling strength, if the magnitude of equipment-loading is small, is much more sensitive in domes of overall buckling than in domes of member buckling, but with increasing equipment-loading, it is very sensitive both in domes of overall buckling and of member buckling

  • PDF

A Study on the Buckling Characteristics of Single-Layer Latticed Domes under Equipment-Loading (설비하중을 고려하는 단층래티스돔의 좌굴특성에 관한 연구)

  • 박지영;정환목;권영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.83-88
    • /
    • 1994
  • Recently, the equipments of the structure are increasing remarkably. It is very important to evaluate the stability of the domes under concentrated loading such as a large-scale illuminating, visional, and sound equipment. The paper is aimed at investigating the buckling characteristics of single-layer latticed domes with triangular network under the uniformly distributed vertical-loading and the partially concentrated equipment-loading. The results show that the effects of the equipment-loading on the buckling strength is much more sensitive in domes of overall buckling than in domes of member buckling.

  • PDF

The Elasto-Plastic Buckling Analysis of Ball-Jointed Single Layer Latticed Domes considering the Characteristics of a Connector (적합부 특성을 고려한 볼 접합 단층 래터스 돔의 탄소성 좌굴해석)

  • Han, Sang-Eul;Kwon, Hyun-Jae;Kim, Jong-Bum
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.2 s.8
    • /
    • pp.91-99
    • /
    • 2003
  • The purpose of this study is to analyze the characteristics of the connector having an influence on the elasto-plastic buckling load of ball-jointed single layer latticed domes. As an analytic model, domes are composed of tubular member elements, balls and connectors. The joint system of members in single layer latticed domes has influence on the buckling load. Therefore, in this paper, the variation of the elasto-plastic buckling load by effects of the connectors characteristics is analyzed. The structural behavior of the connector is investigated by following points: (1) the length of rigid zone, (2) looseness of screw and (3) the diameter of connector. In addition, the elasto-plastic buckling analysis is carried out through the variation of the connectors section of yielding part, and then the buckling mode of the dome is examined. As a result, it is emphasized that the characteristics of the connector have significant effects on the buckling load of latticed domes.

  • PDF

A dominant vibration mode-based scalar ground motion intensity measure for single-layer reticulated domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.245-264
    • /
    • 2016
  • A suitable ground motion intensity measure (IM) plays a crucial role in the seismic performance assessment of a structure. In this paper, we introduce a scalar IM for use in evaluating the seismic response of single-layer reticulated domes. This IM is defined as the weighted geometric mean of the spectral acceleration ordinates at the periods of the dominant vibration modes of the structure considered, and the modal strain energy ratio of each dominant vibration mode is the corresponding weight. Its applicability and superiority to 11 other existing IMs are firstly investigated in terms of correlation with the nonlinear seismic response, efficiency and sufficiency using the results of incremental dynamic analyses which are performed for a typical single-layer reticulated dome. The hazard computability of this newly proposed IM is also briefly discussed and illustrated. A conclusion is drawn that this dominant vibration mode-based scalar IM has the characteristics of strong correlation, high efficiency, good sufficiency as well as hazard computability, and thereby is appropriate for use in the prediction of seismic response of single-layer reticulated domes.

Study on Buckling-Characteristics of Single-Layer Latticed Domes subject to Initial Imperfection (II) (Part II In the case of Pinned-Joint) (단층래티스돔의 좌굴특성에 미치는 형상초기부정에 관한 연구 (II) (제II보 핀접합의 경우))

  • 정환목;권영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.74-78
    • /
    • 1993
  • Compared with rigid-jointed latticed dome, in pinned-joint latticed dome, results of Ref.1 showed reduction of buckling strength by decline of junction's rotational rigidity. Moreover, with decline of junction's rotational rigidity, geometrical initial imperfection incurs more and more reduction of buckling-strength. This study, subsequently the case of rigid-joint domes, is aimed at analyzing buckling-characteristics of pinned-joint single-layer latticed domes with triangular network subjected to initial imperfection.

  • PDF

Study on Buckling-Characteristics of Single-Layer Latticed Domes subject to Initial Imperfection (I) (Part I In the case of Rigid-Joint) (단층래티스돔의 좌굴특성에 미치는 형상초기부정에 관한 연구 (I) (제I보 강접합의 경우))

  • 박정우;정환목;권영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.68-73
    • /
    • 1993
  • The geometrical initial imperfection is generally described that a dome digeresses from ideal shape. In actual domes the mode and amplitude for initial imperfection appear variously and affect buckling-strength sensitively. This study investigates the buckling characteristics of single-layer latticed domes with triangular network subjected to initial imperfection. Additionally, this study is to get the data that are to formulate the general equation taking initial imperfection into consideration.

  • PDF