• Title/Summary/Keyword: single-hole-tunneling

Search Result 9, Processing Time 0.024 seconds

Single Carrier Spectroscopy of Bisolitons on Si(001) Surfaces

  • Lyo, In-Whan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.13-13
    • /
    • 2010
  • Switching an elementary excitation by injecting a single carrier would offer the exciting opportunity for the ultra-high data storage technologies. However, there has been no methodology available to investigate the interaction of low energy discrete carriers with nano-structures. In order to map out the spatial dependency of such single carrier level interactions, we developed a pulse-and-probe algorithm, combining with low temperature scanning tunneling microscopy. The new tool, which we call single carrier spectroscopy, allows us to track the interaction with the target macrostructure with tunneling carriers on a single carrier basis. Using this tool, we demonstrate that it is possible not only to locally write and erase individual bi-solitons, reliably and reversibly, but also to track of creation yields of single and multiple bi-solitons. Bi-solitons are pairs of solitons that are elementary out-of-phase excitations on anti-ferromagnetically ordered pseudo-spin system of Si dimers on Si(001)-c(42) surfaces. We found that at low energy tunneling the single bisoliton creation mechanism is not correlated with the number of carriers tunneling, but with the production of a potential hole under the tip. An electric field at the surface determines the density of the local charge density under the tip, and band-bending. However a rapid, dynamic change of a field produces a potential hole that can be filled by energetic carriers, and the amount of energy released during filling process is responsible for the creation of bi-solitons. Our model based on the field-induced local hole gives excellent explanation for bi-soliton yield behaviors. Scanning tunneling spectroscopy data supports the existence of such a potential hole. The mechanism also explains the site-dependency of bi-soliton yields, which is highest at the trough, not on the dimer rows. Our study demonstrates that we can manipulate not just single atoms and molecules, but also single pseudo-spin excitations as well.

  • PDF

Co-existence of Random Telegraph Noise and Single-Hole-Tunneling State in Gate-All-Around PMOS Silicon Nanowire Field-Effect-Transistors

  • Hong, Byoung-Hak;Lee, Seong-Joo;Hwang, Sung-Woo;Cho, Keun-Hwi;Yeo, Kyoung-Hwan;Kim, Dong-Won;Jin, Gyo-Young;Park, Dong-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.2
    • /
    • pp.80-87
    • /
    • 2011
  • Low temperature hole transport characteristics of gate-all-around p-channel metal oxide semiconductor (PMOS) type silicon nanowire field-effect-transistors with the radius of 5 nm and lengths of 44-46 nm are presented. They show coexisting two single hole states randomly switching between each other. Analysis of Coulomb diamonds of these two switching states reveals a variety of electrostatic effects which is originated by the potential of a single hole captured in the trap near the nanowire.

Studies on single electron-hole recombination in InAs/GaAs Quantum dots (InAs/GaAs 양자점의 단전자-정공 재결합 연구)

  • 이주인;임재영;서정철
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.257-261
    • /
    • 2001
  • InAs/GaAs quantum dots between InGaAs/GaAs superlattices were grown by MBE. The quantum dots size is shown to be very uniform by measuring photoluminescence spectra of quantum dots. Single photon structures based on self-consistent calculation were grown and single photon devices were fabricated by e-beam lithography. The electrical hystereses of I-V curves for single Photon devices would result from single electron-hole recombination, where the resonant-tunneling voltages of electron and hole are different.

  • PDF

Characteristics of Si Nano-Crystal Memory

  • Kwangseok Han;Kim, Ilgweon;Hyungcheol Shin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.1
    • /
    • pp.40-49
    • /
    • 2001
  • We have developed a repeatable process of forming uniform, small-size and high-density self-assembled Si nano-crystals. The Si nano-crystals were fabricated in a conventional LPCVD (low pressure chemical vapor deposition) reactor at $620^{\circ}c$ for 15 sec. The nano-crystals were spherical shaped with about 4.5 nm in diameter and density of $5{\times}l0^{11}/$\textrm{cm}^2$. More uniform dots were fabricated on nitride film than on oxide film. To take advantage of the above-mentioned characteristics of nitride film while keeping the high interface quality between the tunneling dielectrics and the Si substrate, nitride-oxide tunneling dielectrics is proposed in n-channel device. For the first time, the single electron effect at room temperature, which shows a saturation of threshold voltage in a range of gate voltages with a periodicity of ${\Delta}V_{GS}\;{\approx}\;1.7{\;}V$, corresponding to single and multiple electron storage is reported. The feasibility of p-channel nano-crystal memory with thin oxide in direct tunneling regime is demonstrated. The programming mechanisms of p-channel nano-crystal memory were investigated by charge separation technique. For small gate programming voltage, hole tunneling component from inversion layer is dominant. However, valence band electron tunneling component from the valence band in the nano-crystal becomes dominant for large gate voltage. Finally, the comparison of retention between programmed holes and electrons shows that holes have longer retention time.

  • PDF

Low Temperature Characteristics of Schottky Barrier Single Electron and Single Hole Transistors

  • Jang, Moongyu;Jun, Myungsim;Zyung, Taehyoung
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.950-953
    • /
    • 2012
  • Schottky barrier single electron transistors (SB-SETs) and Schottky barrier single hole transistors (SB-SHTs) are fabricated on a 20-nm thin silicon-on-insulator substrate incorporating e-beam lithography and a conventional CMOS process technique. Erbium- and platinum-silicide are used as the source and drain material for the SB-SET and SB-SHT, respectively. The manufactured SB-SET and SB-SHT show typical transistor behavior at room temperature with a high drive current of $550{\mu}A/{\mu}m$ and $-376{\mu}A/{\mu}m$, respectively. At 7 K, these devices show SET and SHT characteristics. For the SB-SHT case, the oscillation period is 0.22 V, and the estimated quantum dot size is 16.8 nm. The transconductance is $0.05{\mu}S$ and $1.2{\mu}S$ for the SB-SET and SB-SHT, respectively. In the SB-SET and SB-SHT, a high transconductance can be easily achieved as the silicided electrode eliminates a parasitic resistance. Moreover, the SB-SET and SB-SHT can be operated as a conventional field-effect transistor (FET) and SET/SHT depending on the bias conditions, which is very promising for SET/FET hybrid applications. This work is the first report on the successful operations of SET/SHT in Schottky barrier devices.

Propagation Characteristics of Ground Vibration Caused by Blast Hole Explosion of High Explosives in Granite (고위력 폭약의 화강암 내 장약공 폭발에 의한 지반진동 전파특성에 관한 연구)

  • Gyeong-Gyu Kim;Chan-Hwi Shin;Han-Lim Kim;Ju-Suk Yang;Sang-Ho Bae;Kyung-Jae Yun;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.29-40
    • /
    • 2023
  • Rock blasting is utilized in various fields such as mining, tunneling, and the construction of underground structures. The role of rock blasting technology has became increasingly significant with the growing utilization of underground cavity. Blast hole pressure, generated during rock blasting, is a critical variable directly impacting factors such as crushing and blast vibration. It stands out as one of the most important parameters for assessing explosive performance and predicting blasting effects. While blast hole pressure has been studied by several researches, comparisons are challenging due to variations in experimental conditions such as explosive type, charge, and blasting conditions. In this study, blast hole pressure sensors and observation hole pressure sensors were developed to measure pressure during single-hole blasting, The experimental results were then used to discuss the propagation characteristics of pressure around the blast hole and the corresponding blast vibration.

c-axis Tunneling in Intercalated Bi$_2Sr_2CaCu_2O_{8+x}$ Single Crystals

  • Lee, Min-Hyea;Chang, Hyun-Sik;Doh, Yong-Joo;Lee, Hu-Jong;Lee, Woo;Choy, Jin-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.260-260
    • /
    • 1999
  • We compared c-axis tunneling characteristics of small stacked intrinsic Josephson junctions prepared on the surface of pristine, I-, and HgI$_2$-intercalated Bi$_2Sr_2CaCu_2O_{8+x}$ (Bi2212) single crystals. The R(T) curves are almost metallic in I-Bi2212 specimens, but semiconducting in HgI$_2$-Bi2212 ones.· The transition temperatures were 82.0 K, 73.0 K, and 76.8 K for pristine Bi2212, I-Bi2212, and HgI2-Bi2212 specimens, respectively, consistent with p-T$_c$ phase diagram. Current-voltage (IV) characteristics of both kinds of specimens show multiple quasiparticle branches with well developed gap features, indicating Josephson coupling is established between neighboring CuO$_2$ planes. The critical current I$_c$ of I-Bi2212 is almost the same as of that of pristine crystals, but I$_c$ is much reduced in Hgl$_2$-Bi2212. In spite of expanded interlayer distances, the interlayer coupling is not significantly affected in I-Bi2212due to holes generated by iodine atoms. The coupling in HgI$_2$-Bi2212 is, however, weakened due to inertness of HgI$_2$ molecules and the expansion of interlayer distance. Relation between the superconducting transition temperature T$_c$ and the critical current I$_c$ seems to contradict Anderson's interlayer-pair-tunneling theory but agree with a modified version of it.

  • PDF

Emission Properties of Electroluminescent Device Using Poly(3-hexylthiophene) as Emilting Material (The Poly(3-hexylthiophene)을 발광층으로 사용한 전계 발광소자의 발광특성)

  • 김주승;구할본;조재철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.263-266
    • /
    • 1999
  • Electrolunlinescent devices based on conjugated polymer emitting materials have been much attracted possible applications for multicolor flat panel display, since the conjugated polymers have a small band gap emitting obtained at a low driving voltage. In this paper, we fabricated the single layer EL device using poly(3-hexylthiophene) as emitting material Electroluminescence(EL) and I-V-L characteristics of indium-tin-oxide[ITO]P3HT/AI device with a various thickness were investigated. It was demonstrate that the I-V characteristics depend, not the voltage but the electric- field strength, The current is dependent on the electric filed and not on the applied voltage, indicating that the carriers are injected by a tunneling process. In the device, the barrier to hole injection is only 0.5eV and the barrier to electron injection is 1.5eV.

  • PDF

Electro-optical properties of organic thin film EL device using PPV (PPV를 이용한 유기 박막 EL 소자의 전기-광학적특성)

  • Kim, Min-Soo;Park, Lee-Soon;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.97-102
    • /
    • 1998
  • Organic thin film EL devices using PPV(poly (p-phenylenevinylene)) as emitter were fabricated on various conditions and structures, their electro-optical properties were estimated. Fabricated EL devices had structures of single layer(ITO(indium tin oxide)/PPV/Mg), double layer(ITO/PVK(poly(N-vinylcarbazole))/PPV/Mg and ITO/PPV/Polymer matrix + PBD/Mg) and three layer (ITO/PVK/PPV/PS(polystyrene)+PBD(butyl-2-(4-bipheny])-5-(4-tert-butylphenyl-1,3,4-oxadiazole))/Mg), their electro-optical characteristics were compared with each other. In structure of double layer (ITO/PPV /Polymer matrix + PBD/Mg), the used polymer-matrices were PMMA(poly(methyl methacrylate), PC(polycarbonate), PS and MCH(side chain liquid crystalline homopolymer). When PS as a hole transport layer was used, the luminance characteristics on concentration of PBD was obtained. In results, current-voltage-luminance curves of fabricated devices had characteristics of tunneling effect and the device showed a stable light emitting.

  • PDF