DOI QR코드

DOI QR Code

Co-existence of Random Telegraph Noise and Single-Hole-Tunneling State in Gate-All-Around PMOS Silicon Nanowire Field-Effect-Transistors

  • Received : 2010.12.16
  • Published : 2011.06.30

Abstract

Low temperature hole transport characteristics of gate-all-around p-channel metal oxide semiconductor (PMOS) type silicon nanowire field-effect-transistors with the radius of 5 nm and lengths of 44-46 nm are presented. They show coexisting two single hole states randomly switching between each other. Analysis of Coulomb diamonds of these two switching states reveals a variety of electrostatic effects which is originated by the potential of a single hole captured in the trap near the nanowire.

Keywords

References

  1. H. Pothier, et al, "Single-Electron Pump Based on Charging Effects," Europhysics Letters, Vol.17, pp.249-254, Jan., 1992. https://doi.org/10.1209/0295-5075/17/3/011
  2. E. Segev, et al, "Hysteresis and intermittency in direct-current superconducting quantum interference device with nanobridges fabricated on a thin membrane," Applied Physics Letters, Vol.98, Jan., 2011.
  3. N. M. Zimmerman, et al, "Modulation of the charge of a single-electron transistor by distant defects," Physical Review B, Vol.56, pp.7675-7678, Sep., 1997. https://doi.org/10.1103/PhysRevB.56.7675
  4. N. M. Zimmerman, et al, "Excellent charge offset stability in a Si-based single-electron tunneling transistor," Applied Physics Letters, Vol.79, pp.3188-3190, Nov., 2001. https://doi.org/10.1063/1.1415776
  5. N. M. Zimmerman, et al, "Charge offset stability in tunable-barrier Si single-electron tunneling devices," Applied Physics Letters, Vol.90, Jan., 2007.
  6. S. M. Verbrugh, et al, "Optimization of Island Size in Single-Electron Tunneling Devices - Experiment and Theory," Journal of Applied Physics, Vol.78, pp. 2830-2836, Aug., 1995. https://doi.org/10.1063/1.360083
  7. K. K. Yadavalli, et al, "Single electron memory devices: Toward background charge insensitive operation," Journal of Vacuum Science & Technology B, Vol.21, pp.2860-2864, Nov-Dec., 2003. https://doi.org/10.1116/1.1625957
  8. T. Yamanaka, et al, "A single-electron stochastic associative processing circuit robust to random background-charge effects and its structure using nanocrystal floating-gate transistors," Nanotechnology, Vol.11, pp.154-160, Sep., 2000. https://doi.org/10.1088/0957-4484/11/3/303
  9. J. M. Elzerman, et al, "Single-shot read-out of an individual electron spin in a quantum dot," Nature, Vol.430, pp.431-435, July, 2004. https://doi.org/10.1038/nature02693
  10. R. Hanson, et al, "Spins in few-electron quantum dots," Reviews of Modern Physics, Vol.79, pp. 1217-1265, Oct-Dec., 2007. https://doi.org/10.1103/RevModPhys.79.1217
  11. L. P. Kouwenhoven, et al, "Excitation spectra of circular, few-electron quantum dots," Science, Vol.278, pp.1788-1792, Dec., 1997. https://doi.org/10.1126/science.278.5344.1788
  12. D. R. Stewart, et al, "Correlations between ground and excited state spectra of a quantum dot," Science, Vol.278, pp.1784-1788, Dec., 1997. https://doi.org/10.1126/science.278.5344.1784
  13. L. P. Rokhinson, et al, "Spin transitions in a small Si quantum dot," Physical Review B, Vol.63, pp.art.no.-035321, Jan., 2001.
  14. Z. H. Zhong, et al, "Coherent single charge transport in molecular-scale silicon nanowires," Nano Letters, Vol.5, pp.1143-1146, June, 2005. https://doi.org/10.1021/nl050783s
  15. K. H. Cho, et al, "Observation of threedimensional shell filling in cylindrical silicon nanowire single electron transistors," Applied Physics Letters, Vol.90, Apr., 2007.
  16. H. W. Liu, et al, "Pauli-spin-blockade transport through a silicon double quantum dot," Physical Review B, Vol.77, Feb., 2008.
  17. L. P. Kouwenhoven, et al, "Spin States of the First Four Holes in a Silicon Nanowire Quantum Dot," Nano Letters, Vol.9, pp.1071-1079, Mar., 2009. https://doi.org/10.1021/nl803440s
  18. M. Fuechsle, et al, "Spectroscopy of few-electron single-crystal silicon quantum dots," Nature Nanotechnology, Vol.5, pp.502-505, July, 2010. https://doi.org/10.1038/nnano.2010.95
  19. L. P. Kouwenhoven, et al, "Ultrasmall silicon quantum dots," Journal of Applied Physics, Vol.105, June, 2009.
  20. C. C. Escott, et al, "Resonant tunnelling features in quantum dots," Nanotechnology, Vol.21, July, 2010.
  21. K. K. Hung, et al, "Random Telegraph Noise of Deep-Submicrometer Mosfets," IEEE Electron Device Letters, Vol.11, pp.90-92, Feb., 1990. https://doi.org/10.1109/55.46938
  22. K. K. Hung, et al, "A Unified Model for the Flicker Noise in Metal Oxide-Semiconductor Field-Effect Transistors," IEEE Transactions on Electron Devices, Vol.37, pp.654-665, Mar., 1990. https://doi.org/10.1109/16.47770
  23. H. Lee, et al, "FN stress induced degradation on random telegraph signal noise in deep submicron NMOSFETs," IEICE Transactions on Electronics, Vol.E91c, pp.776-779, May, 2008.
  24. H. Silva and S. Tiwari, "Random telegraph signal in nanoscale back-side charge trapping memories," Applied Physics Letters, Vol.88, Mar, 2006.
  25. B. H. Hong, et al, "Temperature Dependent Study of Random Telegraph Noise in Gate-All-Around PMOS Silicon Nanowire Field-Effect Transistors," IEEE Transactions on Nanotechnology, Vol.9, pp.754-758, Nov., 2010. https://doi.org/10.1109/TNANO.2010.2045006
  26. S. W. Hwang, et al, "Charge-Transport in a Low-Disorder, Low-Density One-Dimensional Electron-System," Physical Review B, Vol.49, pp.16441-16458, June, 1994. https://doi.org/10.1103/PhysRevB.49.16441
  27. K. H. Cho, et al, "emperature-dependent characteristics of cylindrical gate-all-around twin silicon nanowire MOSFETs (TSNWFETs)," IEEE Electron Device Letters, Vol.28, pp.1129-1131, Dec., 2007. https://doi.org/10.1109/LED.2007.909868