• Title/Summary/Keyword: single crystal

Search Result 2,573, Processing Time 0.028 seconds

Growth and effect of thermal annealing for $AgGaS_2$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $AgGaS_2$ 단결정 박막 성장과 열처리 효과)

  • Moon Jongdae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • A stoichiometric mixture of evaporating materials for AgGaS₂ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, AgGaS₂ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were 590℃ and 440℃, respectively. The temperature dependence of the energy band gap of the AgGaS₂ obtained from the absorption spectra was well described by the Varshni's relation, E/sub g/(T) = 2.7284 eV - (8.695×10/sup -4/ eV/K)T²/(T + 332 K). After the as-grown AgGaS₂ single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of AgGaS₂ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of V/sub Ag/, V/sub s/, Ag/sub int/, and S/sub int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Ag-atmosphere converted AgGaS₂ single crystal thin films to an optical n-type. Also, we confirmed that Ga in AgGaS₂/GaAs crystal thin films did not form the native defects because Ga in AgGaS₂ single crystal thin films existed in the form of stable bonds.

Growth of ${\gamma}-6Bi_2O_3 {\cdot}SiO_2$( Single Crystals by EFG Method (EFG법에 의한 ${\gamma}-6Bi_2O_3 {\cdot}SiO_2$(BSO)단결정의 육성)

  • ;;Kei-Miyamto
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.1
    • /
    • pp.26-38
    • /
    • 1991
  • The fundamental conditions for growing $r-6Bi_2O_3{\cdot}SiO_2$(BSO) single crystal plates by EFG(Edge-defined Film-fed Growth) method, were investigated and characterization, quality test, property measurement were performed for obtained BSO single crystal plates. The opti$\mu$ growing conditions determined in this study were as follows: ${\cdot}$temperature gradient;$24^{\circ}C/cm$ ${\cdot}$pulling rate;2.0mm/h. BSO Single crystal plates grown at the above optimum conditions did not include secondary phase or grain boundary and were confirmed as single crystals by X-ray analysis. IT was found that the single crystal plates had <100> growth direction. G defects, ie pore, void inclusion, striation, were not detected in the single crystal plate under polarizing microscope but dislocations(microscopic defect) were found and dislocation density was $5.1\times10^5/cm^2$.

  • PDF

Growth and effect of thermal annealing of impurity for $AgGaSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy (HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 불순물 열처리 효과)

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.79-80
    • /
    • 2007
  • To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C\;and\;420^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 1.9501 eV - ($8.79{\times}10^{-4}$ eV/K)$T^2$/(T + 250 K). After the as-grown $AgGaSe_2$ single crystal thin films was annealed in Ag-, Se-, and Ga-atmospheres, the origin of point defects of $AgGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Ag},\;V_{Se},\;Ag_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaSe_2$ single crystal thin films to an optical p-type. Also, we confirmed that Ga in $AgGaSe_2$/GaAs did not form the native defects because Ga in $AgGaSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

Growth and Characterization of $CuInTe_2$ Single Crystal thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE) 방법에 의한 $CuInTe_2$ 단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;이관교;이상열;유상하;정준우;정경아;백형원;방진주;신영진
    • Korean Journal of Crystallography
    • /
    • v.11 no.4
    • /
    • pp.212-223
    • /
    • 2000
  • A stochiometric mix of CuInTe₂ polycrystal was prepared in a honizonatal furnace. To obtain the single crystal thin films, CuInTe₂ mixed crystal was deposited on throughly etched GaAs(100) by the HWE system. The source and substrate temperatures were 610℃ and 450℃ respectively, and the thickness of the deposited single crystal thin film was 2.4㎛. CuInTe₂ single crystal thin film was proved to be the optimal growth condition when the excition emission spectrum was the strongest at 1085.3 nm(1.1424 eV) of photoluminescence spectrum at 10 K, and also FWHM of Double Crystal X-ray Rocking Curve (DCRC) was the smallest, 129 arcsec. The Hall effect on this sample was measured by the method of Van der Pauw, and the carrier density and mobility dependent on temperature were 9.57x10/sup 22/ electron/㎥, 1.31x10/sup -2/㎡/V·s at 293 K, respectively. The ΔCr(Crystal field splitting) and the ΔSo (spin orbit coupling splitting( measured at f10K from the photocurrent peaks in the short wavelength of the CuInTe₂ single crystal thin film were about 0.1200 eV, 0.2833 eV respectively. From the PL spectra of CuInTe₂ single crystal thin film at 10 K, the free exciton (E/sub x/) was determined to be 1064.5 nm(1.1647 eV) and the donor-bound exciton(D/sup 0/, X) and acceptor-bound exciton (A/sup 0/, X) were determined to be 1085.3 nm(1.1424 eV) and 1096.8 nm(1.1304 eV0 respectively. And also, the donor-acciptor pair (DAP)P/sub 0/, DAP-replica P₁, DAP-replica P₂ and self-activated (SA) were determined to be 1131 nm (1.0962 eV), 1164 nm(1.0651 eV), 1191.1 nm(1.0340 eV) and 1618.1 nm (0.7662 eV), respectively.

  • PDF

Growth and temperature dependence of energy band gap for $CuGaSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CuGaSe_2$ 단결정 박막의 성장과 에너지 밴드갭의 온도 의존성)

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.97-98
    • /
    • 2007
  • A stoichiometric. mixture of evaporating materials for $CuGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.615\;{\AA}$ and $11.025\;{\AA}$, respectively. To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuGaSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $4.87{\times}10^{17}\;cm^{-3}$ and $129\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;1.7998\;eV\;-\;(8.7489\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;335\;K)$.

  • PDF

Precise EPD Measurement of Single Crystal Sapphire Wafer

  • Lee, Yumin;Kim, Youngheon;Kim, Chang Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.223.1-223.1
    • /
    • 2013
  • Since sapphire single crystal is one of the materials that have excellent mechanical and optical properties, the single crystal is widely used in various fields, and the demand for the use of substrate of LED devices is increasing rapidly. However, crystal defects such as dislocations and stacking faults worsen the properties of the single crystal intensely. When sapphire wafer of single crystal is used as LED substrate, especially, crystal defects have a strong influence on the characteristics of a film deposited on the wafer. In such a case quantitative assessment of the defects is essential, and the evaluation technique is now becoming one of the most important factors in commercialization of sapphire wafer. Wet etching is comparatively easy and accurate method to estimate dislocation density of single crystal because etching reaction primarily takes place where dislocations reached crystal surface which are chemically weak points, and produces etch pit. In the present study, the formation behavior of etch pits and etching time dependence were studied systematically. Etch pit density(EPD) analysis using optical microscope was also conducted and measurement uncertainty of EPD was studied to confirm the reliability of the results. EPDs and measurement uncertainties for 4 inch sapphire wafers were analyzed in terms of 5 and 21 points EPD readings. EPDs and measurement uncertainties in terms of 5 points readings for 4 inch wafers were compared by 2 organizations. We found that the average EPD value in terms of 5 points readings for a 4 inch sapphire wafer may represent the EPD value of the wafer.

  • PDF

4H-SiC bulk single crystal growth using recycled powder (재생 분말을 활용한 4H-SiC 벌크 단결정 성장)

  • Yeo, Im Gyu;Lee, Jae Yoon;Chun, Myong Chuel
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.169-174
    • /
    • 2022
  • This study is to verify the feasibility of SiC single crystal growth using recycled SiC powder. The fundamental physical properties such as particle size, shape, composition and impurities of the recycled powder were analyzed, and the sublimation behavior occurring inside the reactor were predicted using the basic data. As a result of comprehensive judgment, the physical properties of the recycled powder were suitable for single crystal growth, and single crystal growth experiments were conducted using this. 100 mm 4H-SiC single crystal ingot with a height of 25 mm was grown without polytype inclusion. In the case of micro-pipe density was 0.02 ea/cm2 and resistivity characteristics was 0.015~0.020 ohm·cm2, commercial level quality was obtained, but additional analysis related to dislocation density and stacking faults is required for device application.

The Influence of Oxygen on Czochralski Growth of Oxide Single Crystals

  • D. S. Chung;Park, B. H.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.179-181
    • /
    • 1997
  • When grown the oxide single crystal including Li-ion, optimum oxygen condition is needed. Color and crack are caused in single crystal according too the change in the condition of the oxygen. LiTaO₃ crystals grown from off-composition of congruent melt composition under oxygen deficieny condition didn't generate any crack. LiNbO₃. LiTaO₃ crystals grown from congruent melt composition under optimum oxygen condition caused pale yellow color or colorless with no crack. Color gradually became colorless and generated cracks according to Oxygen excess.

  • PDF

A study on the growth and characteristics of $AgGaS_2$ single crystal thin film by hot wall epitaxy (HWE 방법에 의한 $AgGaS_2$단결정 박막성장과 특성에 관한 연구)

  • 홍광준;정준우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.211-220
    • /
    • 1998
  • The stochiometric composition of $AgGaS_2$polycrystal source materials for the single crystal thin films were prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns, it was found that the polycrystal $AgGaS_2$has tetragonal structure of which lattice constant $a_0\;and \;c_0$ were 5.756 $\AA$ and 10.305 $\AA$, respectively. $AgGaS_2$single crystal thin film was deposited on throughly etched GaAs(100) substrate from mixed crystal $AgGaS_2$by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $590^{\circ}C$ and $440^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5 $mu \textrm{m}$/h. The crystallinity of the grown single crystal thin films was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for $AgGaS_2$single crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by${\Alpha};=;8.695{\times}10^{-4};eV/K,and;{\beta};=;332;K$. from the photocurrent spectra by illumination of polarized light of the $AgGaS_2$single crystal thin film, we have found that crystal field splitting $\Delta$Cr was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pairs are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF

The Effect of Thermal Annealing and Growth of CdGa2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 CdGa2Se4 단결정 박막 성장과 열처리 효과)

  • Hong, Myung-Seok;Hong, Kwang-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.829-838
    • /
    • 2007
  • The stochiometric mix of evaporating materials for the $CdGa_2Se_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD).The carrier density and mobility of $CdGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}\;cm^{-3},\;345\;cm^2/V{\cdot}s$ at 293 K. respectively. The temperature dependence of the energy band gap of the $CdGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $Eg(T)\;=\;2.6400\;eV\;-\;(7.721{\times}10^{-4}\;eV/K)T^2/(T+399\;K)$. After the as-grown single crystal $CdGa_2Se_4$ thin films were annealed in Cd-, Se-, and Ga -atmospheres, the origin of point defects of single crystal $CdGa_2Se_4$ thin films has been investigated by PL at 10 K. The native defects of $V_{Cd}$, $V_{Se}$, $Cd_{int}$, and $Se_{int}$ obtained by PL measurements were classified as donors or accepters. We concluded that the heat-treatment in the Cd-atmosphere converted single crystal $CdGa_2Se_4$ thin films to an optical p-type. Also, we confirmed that Ga in $CdGa_2Se_4/GaAs$ did not form the native defects because Ga in single crystal $CdGa_2Se_4$ thin films existed in the form of stable bonds.