• Title/Summary/Keyword: single core

Search Result 1,022, Processing Time 0.033 seconds

Energy absorption characteristics of diamond core columns under axial crushing loads

  • Azad, Nader Vahdat;Ebrahimi, Saeed
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.605-628
    • /
    • 2016
  • The energy absorption characteristics of diamond core sandwich cylindrical columns under axial crushing process depend greatly on the amount of material which participates in the plastic deformation. Both the single-objective and multi-objective optimizations are performed for columns under axial crushing load with core thickness and helix pitch of the honeycomb core as design variables. Models are optimized by multi-objective particle swarm optimization (MOPSO) algorithm to achieve maximum specific energy absorption (SEA) capacity and minimum peak crushing force (PCF). Results show that optimization improves the energy absorption characteristics with constrained and unconstrained peak crashing load. Also, it is concluded that the aluminum tube has a better energy absorption capability rather than steel tube at a certain peak crushing force. The results justify that the interaction effects between the honeycomb and column walls greatly improve the energy absorption efficiency. A ranking technique for order preference (TOPSIS) is then used to sort the non-dominated solutions by the preference of decision makers. That is, a multi-criteria decision which consists of MOPSO and TOPSIS is presented to find out a compromise solution for decision makers. Furthermore, local and global sensitivity analyses are performed to assess the effect of design variable values on the SEA and PCF functions in design domain. Based on the sensitivity analysis results, it is concluded that for both models, the helix pitch of the honeycomb core has greater effect on the sensitivity of SEA, while, the core thickness has greater effect on the sensitivity of PCF.

Does the Understanding of Core Competencies Matter to IT Outsourcing Performance? (기업의 핵심역량이 IT 아웃소싱 성과에 직접적인 관련이 있을 것인가?)

  • Kim, Young-Jin;Nam, Ki-Chan;Koo, Chul-Mo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.3
    • /
    • pp.97-114
    • /
    • 2007
  • IT outsourcing providers has been expanded from a single functional system to the entire IT service to gain sustainable competitiveness. This new trend of IT outsourcing need outsourcing management capability based on a firm's core capacity. Hiring external IT service providers to manage part or all of its information-related services helps a firm focus on its core business and provides better services to its clients, thus obtaining sustainable competitive advantage. This research investigates the major factors that determine the level of a particular firm's success at IT outsourcing. Based on process innovation and core-competency theories, we identify three significant components of a firm's IT outsourcing management method (ITOMM): level of core-competency-based management, maturity of outsourced tasks, and maturity of outsourcing management. Comprehensive data collection was conducted through an outsourcing association. The survey data were analyzed using a structural analysis method. Maturity of outsourced tasks and maturity of outsourcing management were found to affect project performance directly, while level of core-competency-based management only indirectly impacted project performance through its positive impact on the other two ITOMM components.

Validation of UNIST Monte Carlo code MCS using VERA progression problems

  • Nguyen, Tung Dong Cao;Lee, Hyunsuk;Choi, Sooyoung;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.878-888
    • /
    • 2020
  • This paper presents the validation of UNIST in-house Monte Carlo code MCS used for the high-fidelity simulation of commercial pressurized water reactors (PWRs). Its focus is on the accurate, spatially detailed neutronic analyses of startup physics tests for the initial core of the Watts Bar Nuclear 1 reactor, which is a vital step in evaluating core phenomena in an operating nuclear power reactor. The MCS solutions for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Applications (VERA) core physics benchmark progression problems 1 to 5 were verified with KENO-VI and Serpent 2 solutions for geometries ranging from a single-pin cell to a full core. MCS was also validated by comparing with results of reactor zero-power physics tests in a full-core simulation. MCS exhibits an excellent consistency against the measured data with a bias of ±3 pcm at the initial criticality whole-core problem. Furthermore, MCS solutions for rod worth are consistent with measured data, and reasonable agreement is obtained for the isothermal temperature coefficient and soluble boron worth. This favorable comparison with measured parameters exhibited by MCS continues to broaden its validation basis. These results provide confidence in MCS's capability in high-fidelity calculations for practical PWR cores.

Design of the flexible switching controller for small PWR core power control with the multi-model

  • Zeng, Wenjie;Jiang, Qingfeng;Du, Shangmian;Hui, Tianyu;Liu, Yinuo;Li, Sha
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.851-859
    • /
    • 2021
  • Small PWR can be used for power generation and heating. Considering that small PWR has the characteristics of flexible operating conditions and complex operating environment, the controller designed based on single power level is difficult to achieve the ideal control of small PWR in the whole range of core power range. To solve this problem, a flexible switching controller based on fuzzy controller and LQG/LTR controller is designed. Firstly, a core fuzzy multi-model suitable for full power range is established. Then, T-S fuzzy rules are designed to realize the flexible switching between fuzzy controller and LQG/LTR controller. Finally, based on the core power feedback principle, the core flexible switching control system of small PWR is established and simulated. The results show that the flexible switching controller can effectively control the core power of small PWR and the control effect has the advantages of both fuzzy controller and LQG/LTR controller.

Cross section generation for a conceptual horizontal, compact high temperature gas reactor

  • Junsu Kang;Volkan Seker;Andrew Ward;Daniel Jabaay;Brendan Kochunas;Thomas Downar
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.933-940
    • /
    • 2024
  • A macroscopic cross section generation model was developed for the conceptual horizontal, compact high temperature gas reactor (HC-HTGR). Because there are many sources of spectral effects in the design and analysis of the core, conventional LWR methods have limitations for accurate simulation of the HC-HTGR using a neutron diffusion core neutronics simulator. Several super-cell model configurations were investigated to consider the spectral effect of neighboring cells. A new history variable was introduced for the existing library format to more accurately account for the history effect from neighboring nodes and reactivity control drums. The macroscopic cross section library was validated through comparison with cross sections generated using full core Monte Carlo models and single cell cross section for both 3D core steady-state problems and 2D and 3D depletion problems. Core calculations were then performed with the AGREE HTR neutronics and thermal-fluid core simulator using super-cell cross sections. With the new history variable, the super-cell cross sections were in good agreement with the full core cross sections even for problems with significant spectrum change during fuel shuffling and depletion.

Implementation of Autonomous Vehicle Situational Awareness Technology using Infrastructure Edge on a Two- way Single Lane in Traffic-isolated Area (교통소외지역 양방향 단일차선에서 인프라 엣지를 이용한 자율주행 차량 상황 인지 기술 구현)

  • Seongjong Kim;Seokil Song
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.106-115
    • /
    • 2023
  • In this paper, we propose a sensor data sharing system for the safe and smooth operation of autonomous vehicles on two-way single lanes in traffic-isolated areas and implement the core module, the situational awareness technology. Two-way single lanes pose challenges for autonomous vehicles, particularly when encountering parked vehicles or oncoming traffic, leading to reversing issues. We introduce a system using infrastructure cameras to detect vehicles' approach, enter, and leave on twoway single lanes in real-time, transmitting this information to autonomous vehicles via V2N communication, thereby expanding the sensing range of the autonomous vehicles. The core part of the proposed system is the situational awareness of the two-way single lane using infrastructure cameras. In this paper, we implement this using object detection and tracking technology. Finally, we validate the implemented situational awareness technology using data collected from actual two-way single lanes.

  • PDF

Implementation of SIMD-based Many-Core Processor for Efficient Image Data Processing (효율적인 영상데이터 처리를 위한 SIMD기반 매니코어 프로세서 구현)

  • Choi, Byong-Kook;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • Recently, as mobile multimedia devices are used more and more, the needs for high-performance and low-energy multimedia processors are increasing. Application-specific integrated circuits (ASIC) can meet the needed high performance for mobile multimedia, but they provide limited, if any, generality needed for various application requirements. DSP based systems can used for various types of applications due to their generality, but they require higher cost and energy consumption as well as less performance than ASICs. To solve this problem, this paper proposes a single instruction multiple data (SIMD) based many-core processor which supports high-performance and low-power image data processing while keeping generality. The proposed SIMD based many-core processor composed of 16 processing elements (PEs) exploits large data parallelism inherent in image data processing. Experimental results indicate that the proposed SIMD-based many-core processor higher performance (22 times better), energy efficiency (7 times better), and area efficiency (3 times better) than conversional commercial high-performance processors.

Changes in pre-osteoblast cells associated with non-precious metal cores with dental implants: Pilot test (치과용 임플란트 적용 비귀금속 코어와 관련된 전조골세포의 변화)

  • Park, Jung-Hyun;Kang, Seen-Young;Kim, Jong-Woo;Kim, Jang-Ju;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.40 no.2
    • /
    • pp.63-69
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the non-precious metal core materials used in the dental laboratory to fabricate the implant superstructure by CAD / CAM method. And to observe and compare the morphology and distribution of the osteoblasts in relation to implant osseointegration. Methods: In this study, the mandibular right first molar tooth model was selected as an international standard to produce a single core. Using this model, the impression was made with the silicone rubber, the tooth model was scanned, and a single core was designed and 5-axis milling was performed. The materials used were Cobalt-Chromium and Nickel-Chromium, and the cores for dental implant top structures were fabricated according to the procedures of the dental labs. After the fabrication, the marginal area of the core was separated and cell culture experiment was performed. The osteoblast cells used MC3T3-E1, which is currently widely used. For morphological analysis of osteoblasts, cells were posttreated and observed using CLSM (Confocal Laser Scanning Microscope) and compared. Results: The cell adhesion behavior of the specimen surface measured by CLSM was uniformly distributed in specimen A (Cobalt-Chromium) than in specimen B (Nickel-Chromium). The distribution and changes of the cells were different in the two specimens. Conclusion : It is possible to confirm that specimen A (Cobalt-Chromium) is suitable for the living body through adhesion and proliferation of osteoblasts related to implant osseointegration in the non-precious metal superstructure used after implantation. It is considered that it is preferable to use Co-Cr when fabricating the superstructure.

Real-Time Support on Multi-Processor for Windows (멀티프로세서 윈도우즈 상에서 실시간성 지원)

  • Song, Chang-In;Lee, Seung-Hoon;Ju, Min-Gyu;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.68-77
    • /
    • 2012
  • As the system development environment moves from single core to multi core-based platforms, it becomes more important to maintain compatibility between single core-based implementations and multi core-based implementations. Moreover, it is very important to support real-time on multi core platforms especially in cases of embedded software or test equipments which need real-time as well as correctness. Since Windows operating system dopes not support real-time in itself, it has been supporting real-time using expensive third-party solutions such as RTX or INtime. So as to reduce this kind of development expenses, in this paper, we propose RTiK-MP(Real-Time implant Kernel-Multi Processor) which supports real-time on Windows using the Local APIC of x86 architectures, and evaluate the performance of the proposed RTiK-MP after deploying it on portable missile test equipments.

PWR core calculation based on pin-cell homogenization in three-dimensional pin-by-pin geometry

  • Bin Zhang;Yunzhao Li;Hongchun Wu;Wenbo Zhao;Chao Fang;Zhaohu Gong;Qing Li;Xiaoming Chai;Junchong Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.1950-1958
    • /
    • 2024
  • For the pressurized water reactor two-step calculation, the traditional assembly homogenization and two-group neutron diffusion calculation have been widely used. When it comes to the core pin-by-pin simulation, many models and techniques are different and unsettled. In this paper, the homogenization methods based on the pin discontinuity factors and super homogenization factors are used to get the pin-cell homogenized parameters. The heterogeneous leakage model is applied to modify the infinite flux spectrum of the single assembly with reflective boundary condition and to determine the diffusion coefficients for the SP3 solver which is used in the core simulation. To reduce the environment effect of the single-assembly reflective boundary condition, the online method for the SPH factors updating is applied in this paper, and the functionalization of SPH factors based on the least-squares method will be pre-made alone with the table of the group constants. The fitting function will be used to update the thermal-group SPH factors with a whole-core pin-by-pin homogeneous solution online. The three-dimensional Watts Bar Nuclear Unit 1 (WBN1) problem was utilized to test the performance of pin-by-pin calculation. And numerical results have demonstrated that PWR pin-by-pin core calculation has more accurate results compared with the traditional assembly-homogenization scheme.