Browse > Article
http://dx.doi.org/10.12989/scs.2016.21.3.605

Energy absorption characteristics of diamond core columns under axial crushing loads  

Azad, Nader Vahdat (Mechanical Engineering Department, Yazd University)
Ebrahimi, Saeed (Mechanical Engineering Department, Yazd University)
Publication Information
Steel and Composite Structures / v.21, no.3, 2016 , pp. 605-628 More about this Journal
Abstract
The energy absorption characteristics of diamond core sandwich cylindrical columns under axial crushing process depend greatly on the amount of material which participates in the plastic deformation. Both the single-objective and multi-objective optimizations are performed for columns under axial crushing load with core thickness and helix pitch of the honeycomb core as design variables. Models are optimized by multi-objective particle swarm optimization (MOPSO) algorithm to achieve maximum specific energy absorption (SEA) capacity and minimum peak crushing force (PCF). Results show that optimization improves the energy absorption characteristics with constrained and unconstrained peak crashing load. Also, it is concluded that the aluminum tube has a better energy absorption capability rather than steel tube at a certain peak crushing force. The results justify that the interaction effects between the honeycomb and column walls greatly improve the energy absorption efficiency. A ranking technique for order preference (TOPSIS) is then used to sort the non-dominated solutions by the preference of decision makers. That is, a multi-criteria decision which consists of MOPSO and TOPSIS is presented to find out a compromise solution for decision makers. Furthermore, local and global sensitivity analyses are performed to assess the effect of design variable values on the SEA and PCF functions in design domain. Based on the sensitivity analysis results, it is concluded that for both models, the helix pitch of the honeycomb core has greater effect on the sensitivity of SEA, while, the core thickness has greater effect on the sensitivity of PCF.
Keywords
diamond core; honeycomb columns; optimization; sensitivity analysis; crashworthiness; energy absorption; response surface method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abramowicz, W. and Jones, N. (1984a), "Dynamic axial crushing of square tubes", Int. J. Impact Eng., 2(2), 179-208.   DOI
2 Abramowicz, W. and Jones, N. (1984b), "Dynamic axial crushing of circular tubes", Int. J. Impact Eng., 2(3), 263-281.   DOI
3 Acar, E., Guler, M.A., Gerceker, B., Cerit, M.E. and Bayram, B. (2011), "Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations", Thin-Wall. Struct., 49(1), 94-105.   DOI
4 Athan, T.W. and Papalambros, P.Y. (1999), "A note on weighted criteria methods for compromise solutions in multi-objective optimization", Eng. Optim., 27(2), 155-176.   DOI
5 Avalle, M., Chiandussi, G. and Belingardi, G. (2002), "Design optimization by response surface methodology: application to crashworthiness design of vehicle structures", Struct. Multidiscip. Optim., 24(4), 325-332.   DOI
6 Chen, M.F. and Tzeng, G.H. (2004), "Combining grey relation and TOPSIS concepts for selecting an expatriate host country", Math. Comput. Model, 40(13), 1473-1490.   DOI
7 Chiandussi, G. and Avalle, M. (2002), "Maximization of the crushing performance of a tubular device by shape optimization", Comput. Struct., 80(27-30), 2425-2432.   DOI
8 Deng, H., Yeh, C.H. and Willis, R.J. (2000), "Inter-company comparison using modified TOPSIS with objective weights", Comput. Operat. Res., 27(10), 963-973.   DOI
9 Ebrahimi, S. and Vahdatazad, N. (2015), "Multi-objective optimization and sensitivity analysis of honeycomb sandwich cylindrical columns under axial crushing loads", Thin-Wall. Struct., 88, 90-104.   DOI
10 Fang, H., Rais-Rohani, M., Liu, Z. and Horstemeyer, M.F. (2005), "A comparative study of metamodeling methods for multi-objective crashworthiness optimization", Comput. Struct., 83(25-26), 2121-2136.   DOI
11 Fang, J., Gao, Y., Sun, G., Xu, C. and Li, Q. (2015), "Multi objective robust design optimization of fatigue life for a truck cab", Reliab. Eng. Syst. Safe., 135, 1-8.   DOI
12 Forsberg, J. and Nilsson, L. (2005), "On polynomial response surfaces and Kriging for use in structural optimization of crashworthiness", Struct. Multidiscip. Optim., 29(3), 232-243.   DOI
13 Forsberg, J. and Nilsson, L. (2006), "Evaluation of response surface methodologies used in crashworthiness optimization", Int. J. Impact Eng., 32(5), 759-777.   DOI
14 Hou, S.J., Li, Q., Long, S.Y., Yang, X.J. and Li, W. (2007), "Design optimization of regular hexagonal thin walled columns with crashworthiness criteria", Finite Elem. Anal. Des., 43(6-7), 555-565.   DOI
15 Hou, S.J., Li, Q., Long, S.Y., Yang, X.J. and Li, W. (2008), "Multi-objective optimization of multi-cell sections for the crashworthiness design", Int. J. Impact Eng., 35(11), 1355-1367.   DOI
16 Hou, S., Li, Q., Long, S., Yang, X. and Li, W. (2009), "Crashworthiness design for foam filled thin-wall structures", Mater. Des., 30(6), 2024-2032.   DOI
17 Hwang, C.L. and Yoon, K. (1981), Multiple Attribute Decision Making: Methods and Applications, Berlin/Heidelberg/New York, Springer-Verlag.
18 Jansson, T., Nilsson, L. and Redhe, M. (2003), "Using surrogate models and response surface in structural optimization with application to crashworthiness design and sheet metal forming", Struct Multidiscip. Optim., 25(2), 129-140.   DOI
19 Kim, H.S. (2002), "New extruded multi cell aluminum profile for maximum crush energy absorption and weight efficiency", Thin-Wall. Struct., 40(4), 311-327.   DOI
20 Kennedy, J. and Eberhart, R.C. (1995), "Particle swarm optimization", Proceedings of the IEEE International Joint Conference on Neural Networks, Piscataway, NJ, USA, November-December, pp. 1942-1948.
21 Kodiyalam, S., Yang, R.J., Gu, L. and Tho, C.H. (2004), "Multidisciplinary design optimization of a vehicle system in a scalable, high performance computing environment", Struct. Multidiscip. Optim., 26(3), 256-263.   DOI
22 Lanzi, L., Castelletti, M.L. and Anghileri, M. (2004), "Multi-objective optimization of composite absorber shape under crashworthiness requirements", Compos. Struct., 65(3-4), 433-441.   DOI
23 Lee, T.H. and Lee, K. (2005), "Multi-criteria shape optimization of a funnel in cathode ray tubes using a response surface model", Struct. Multidiscip. Optim., 29(5), 374-381.   DOI
24 Lee, S.H., Kim, H.Y. and Oh, I.S. (2002), "Cylindrical tube optimization using response surface method based on stochastic process", J. Mater. Process. Technol., 130-131, 490-496.   DOI
25 Li, M., Deng, Z., Guo, H., Liu, R. and Ding, B. (2014), "Optimizing crashworthiness design of square honeycomb structure", J. Cent. South Univ., 21(3), 912-919.   DOI
26 Liao, X.T., Li, Q., Yang, X.J., Zhang, W.G. and Li, W. (2007), "Multiobjective optimization for crash safety design of vehicles using stepwise regression model", Struct. Multidiscip. Optim, 35(6), 561-569. DOI: 10.1007/s00158-007-0163-x   DOI
27 Lin, C.T., Chang, C.W. and Chen, C.B. (2006), "The worst ill-conditioned silicon wafer slicing machine detected by using Grey relational analysis", Int. J. Adv. Manuf. Technol., 31(3), 388-395.   DOI
28 Oktem, H., Erzurumlu, T. and Kurtaran, H. (2005), "Application of response surface methodology in the optimization of cutting conditions for surface roughness", J. Mater. Process. Technol., 170(1-2), 11-16.   DOI
29 Lu, G. and Yu, T. (2003), Energy Absorption of Structures and Materials, Wood Head Publishing Ltd., Cambridge, England.
30 Myers, R.H. and Montgomery, D.C. (2002), Response Surface Methodology, Wiley, New York, NY, USA.
31 Saltelli, A., Ratto, M., Tarantola, S. and Campolongo, F. (2006), "Sensitivity analysis practices: Strategies for model-based inference", Reliab. Eng. Syst. Safe., 91(10-11), 1109-1125.   DOI
32 Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M. and Tarantola, S. (2008), Global Sensitivity Analysis, The Primer, John Wiley & Sons.
33 Sinha, K. (2007), "Reliability-based multi-objective optimization for automotive crashworthiness and occupant safety", Struct. Multidiscip. Optim., 33(3), 255-268.   DOI
34 Sun, G., Li, G., Stone, M. and Li, Q. (2010a), "A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials", Compos. Mater. Sci., 49(3), 500-511.   DOI
35 Sun, G., Li, G., Hou, S., Zhou, S., Li, W. and Li, Q. (2010b), "Crashworthiness design for functionally graded foam-filled thin-walled structures", Mater. Sci. Eng. A-Struct., 527(7-8), 1911-1919.   DOI
36 Sun, G., Song, X., Baek, S. and Li, Q. (2014), "Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel", Struct. Multidiscip. Optim., 49(6), 897-913   DOI
37 Yang, R.J., Wang, N., Tho, C.H., Bobineau, J.P. and Wang, B.P. (2005), "Metamodeling development for vehicle frontal impact simulation", J. Mech. Des., 127(5), 1014-1020.   DOI
38 Wang, G.G. and Shan, S. (2007), "Review of metamodeling techniques in support of engineering design optimization", J. Mech. Des., 129(4), 370-380.   DOI
39 Wierzbicki, T. (1998), "Crash behavior of box columns filled with aluminum honeycomb or foam", Compos. Struct., 68(4), 343-367.   DOI
40 Xiang, Y.J., Wang, Q., Fan, Z.J. and Fang, H.B. (2006), "Optimal crashworthiness design of a spot-welded thin-walled hat section", Finite Elem. Anal. Des., 42(10), 846-855.   DOI
41 Yin, H., Wen, G., Hou, S. and Chen, K. (2011), "Crushing analysis and multi-objective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes", Mater. Des., 32, 4449-4460.   DOI
42 Yin, H., Wen, G., Liu, Z. and Qing, Q. (2014), "Crashworthiness optimization design for foam-filled multi-cell thin-walled structures", Thin-Wall. Struct., 75, 8-17.   DOI
43 Zarei, H.R. and Kroger, M. (2006), "Multi-objective crashworthiness optimization of circular aluminum tubes", Thin-Wall. Struct., 44(3), 301-308.   DOI
44 Zarei, H.R. and Kroger, M. (2007), "Optimum honeycomb filled crash absorber design", Mater. Des., 29(1), 193-204.   DOI
45 Zhang, Z., Liu, S. and Tang, Z. (2010), "Crushworthiness investigation of kagome honeycomb sandwich cylindrical column under axial crushing loads", Thin-Wall. Struct., 48(1), 9-18.   DOI
46 Zhang, Z., Liu, S. and Tang, Z. (2011), "Comparisons of honeycomb sandwich and foam-filled cylindrical columns under axial crushing loads", Thin-Wall. Struct., 49(9), 1071-1079.   DOI