• Title/Summary/Keyword: single bus

Search Result 261, Processing Time 0.026 seconds

A Novel Charger/Discharger for the Parallel Connected Battery Module System (병렬 연결 배터리 모듈 시스템을 위한 새로운 충.방전기)

  • 조윤제
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.636-640
    • /
    • 2000
  • A novel integrated battery charger/discharger converter for a standardized battery module is proposed. Instead of using separate charger and discharger converters. it integrates these two converters into a single converter in order to minimize the size. the integrated charger/discharger converter not only regulates the solar array output power including the peak power tracking capability but also controls the battery charging/discharging current depending on the solar array output power and the load power. In addition it offers a regulated bus voltage which simplifies the power distribution/conversion for the pay load.

  • PDF

Operation Analysis of Novel UPFC without Series Injection Transformers (직렬주입변압기가 없는 새로운 UPFC의 동특성 분석)

  • 백승택;한병문
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.641-648
    • /
    • 2003
  • This paper proposes a novel UPFE based on H-bridge modules, isolated through single-phase multi-winding transformers. The dynamic performance of proposed system was analyzed by simulation with EMTDC, assuming that the UPFC is connected with the 138-kV transmission line of one-machine-infinite-bus power system. The proposed system can be directly connected to the transmission line without series injection transformers. It has flexibility in expanding the operation voltage by increasing the number of H-bridge modules.

A Study on the Design of Power System Stabilizer using Real Variable Genetic Algorithm (실변수 유전알고리즘을 이용한 전력계통 안정화장치 설계)

  • Lee, Sang-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.479-485
    • /
    • 2000
  • This paper presents a analysis method for dynamic characteristics of power system using a Genetic-based Power System Stabilizer(PSS). The proposed PSS parameters are optimized using Genetic Algorithm(GA) in order to maintain optimal operation of generator under the various operating conditions. To decrease the computational time, real variable string is adopted. The results tested on a single machined infinite bus system verify that the proposed controller has better dynamic performance than conventional controller.

  • PDF

The Effect of input signals for improving Power System Stabilizer(PSS) efficiency (전력계통 안정화장치(PSS)의 성능향상을 위한 입력신호 영향)

  • Hur, Jin;Kim, Dong-Joon;Kim, Tae-Kyun;Shin, Jeong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.144-146
    • /
    • 1999
  • This paper provides an analysis of the effect of input signals, such as acceleration power and generator shaft speed for improving Power System Stabilizer(PSS) efficiency. We consider a single machine and infinite bus system which is modeled by PSCAD/EMTDC. We choose an optimum stabilizer gain with respect to eigenvalue analysis and transient stability analysis to each input signal.

  • PDF

Simplified Power System Model of the Generator with the High Speed Solid State Exciter for Dynamic Stability Studies (동태안정도연구를 위한 반도체 속응여자방식 발전소의 간이전력계통 모형)

  • 한송엽;성세진
    • 전기의세계
    • /
    • v.24 no.5
    • /
    • pp.67-71
    • /
    • 1975
  • A dynamic stability analysis of a large interconnected power system takes much time even though the modern large computer is used because of the high order of the system dynamic equations. By the necessity of the low order power system models, a simplified power system model of the generator with the high speed solid state exciter is developed in this paper. The usefulness of the reduced model is confirmed by comparing its eigenvalues and the transient responses with those of the original model in the single machine to infinite bus power system.

  • PDF

Structure of System Matrix of one Machine System with Controllers (저차모델계통의 계통행렬의 구조)

  • 권세혁
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1146-1152
    • /
    • 1990
  • Direct calculation algorithm for the nonzero elements of system matrix is suggested for a single machine connected to the infinite bus. Excitation system and power system stabilizer are included. When the system matrix is partitioned into 15 nonzero blocks, we can identify the location of nonzero elements and formula for each element. No matrix inversion and multiplication are necessary. Sensitivity coefficients with respect to controller parameters are suggested based on the structure of system matrix.

Single-phase Split DC-bus Inverter for Individual MPPTs (개별 MPPT 제어가 가능한 단상 DC-버스 분산형 인버터)

  • Shin, Hojoon;Ha, Jung-Ik
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.248-249
    • /
    • 2013
  • 본 논문에서는 개별적인 MPPT 제어가 가능한 단상 DC-버스 분산형 인버터의 구조 및 제어 방식에 대해 소개한다. 본 인버터는 H-브릿지 인버터에서 직류단이 분리된 형태이며, 다수의 태양광 패널의 MPPT 제어가 가능하다. 본 논문에서는 제안된 인버터의 계통 발전 방식과 함께 각 태양광 패널의 전력 분배 제어에 대해 논의하며, 모의실험을 통해 제안된 방식의 성능을 확인한다.

  • PDF

An Analysis on Effects of Phase Compensation on Power System Stability in the PSS Parameter Tuning (PSS Tuning시 위상보상이 계통안정도에 미치는 영향 분석)

  • Kim, Tae-Kyun;Shin, Jeong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1147-1149
    • /
    • 1998
  • This paper presents the result of an analysis on effects of phase compensation on power system stability in the PSS parameter tuning. Synchronizing and damping coefficients are induced from lineal model for generator with PSS. Synchronizing and damping coefficients corresponding to time constants of phase compensation control block are calculated on a single machine, infinite bus test system. The Parameter tuning concepts, basic function, structural elements and performance criteria of PSS are introduced.

  • PDF

Zero Voltage Transition Full Bridge Boost Converter for Single Stage Power Factor Correction (Single Stage 역률보상을 위한 ZVT 풀 브릿지 부스트 컨버터)

  • Song, D.I.;Kwon, S.K.;Cho, J.G.;Back, J,W.;Kim, W.H.;Kim, J.S.;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.351-354
    • /
    • 1996
  • A zero-voltage-transition(ZVT) full bridge (FB) boost converter for single stage power factor correction (PFC) in distributed power system is proposed. A simple auxiliary circuit provides zero-voltage-switching(ZVS) condition to all semiconductor devices without imposing additional voltage and current stresses and loss of PWM capability. The proposed boost converter provides both input power factor correction and direct conversion from $110{\sim}220VAC$ line to 300VDC bus with single power stage. Operational principle, analysis of the proposed converter are described and verified by computer simulation and experimental results from a 1.5 kW, 80 kHz laboratory prototype.

  • PDF

A Voltage-fed Single-stage PFC Full-bridge Converter with Asymmetric Phase-shifted Control for Battery Chargers

  • Qian, Qinsong;Sun, Weifeng;Zhang, Taizhi;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • A novel voltage-fed single-stage power factor correction (PFC) full-bridge converter based on asymmetric phase-shifted control for battery chargers is proposed in this paper. The attractive feature of the proposed converter is that it can operate in a wide output voltage range without an output low-frequency ripple, which is indispensable in battery charger applications. Meanwhile, the converter can maintain a high power factor and a controllable dc bus voltage over a wide output voltage range. In this paper, the realization of PFC and the operation principle of asymmetric phase-shifted control are given. A small-signal analysis of the proposed single-stage power factor correction (PFC) full-bridge converter is performed. Experimental results obtained from a 1kW experimental prototype are given to validate the feasibility of the proposed converter. The PF is higher than 0.97 over the entire output voltage range with the proposed control strategy.