• Title/Summary/Keyword: sine testing

Search Result 31, Processing Time 0.025 seconds

Estimating pile setup parameter using XGBoost-based optimized models

  • Xigang Du;Ximeng Ma;Chenxi Dong;Mehrdad Sattari Nikkhoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.259-276
    • /
    • 2024
  • The undrained shear strength is widely acknowledged as a fundamental mechanical property of soil and is considered a critical engineering parameter. In recent years, researchers have employed various methodologies to evaluate the shear strength of soil under undrained conditions. These methods encompass both numerical analyses and empirical techniques, such as the cone penetration test (CPT), to gain insights into the properties and behavior of soil. However, several of these methods rely on correlation assumptions, which can lead to inconsistent accuracy and precision. The study involved the development of innovative methods using extreme gradient boosting (XGB) to predict the pile set-up component "A" based on two distinct data sets. The first data set includes average modified cone point bearing capacity (qt), average wall friction (fs), and effective vertical stress (σvo), while the second data set comprises plasticity index (PI), soil undrained shear cohesion (Su), and the over consolidation ratio (OCR). These data sets were utilized to develop XGBoost-based methods for predicting the pile set-up component "A". To optimize the internal hyperparameters of the XGBoost model, four optimization algorithms were employed: Particle Swarm Optimization (PSO), Social Spider Optimization (SSO), Arithmetic Optimization Algorithm (AOA), and Sine Cosine Optimization Algorithm (SCOA). The results from the first data set indicate that the XGBoost model optimized using the Arithmetic Optimization Algorithm (XGB - AOA) achieved the highest accuracy, with R2 values of 0.9962 for the training part and 0.9807 for the testing part. The performance of the developed models was further evaluated using the RMSE, MAE, and VAF indices. The results revealed that the XGBoost model optimized using XGBoost - AOA outperformed other models in terms of accuracy, with RMSE, MAE, and VAF values of 0.0078, 0.0015, and 99.6189 for the training part and 0.0141, 0.0112, and 98.0394 for the testing part, respectively. These findings suggest that XGBoost - AOA is the most accurate model for predicting the pile set-up component.

The effects of 3.5% NaCl solution on the corrosion fatigue crack propagation characteristics of SS41 steel (SS41강의 부식피로 균열 전파특성에 미치는 3.5% NaCl수용액의 영향)

  • 오세욱;김재철;최영수
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.111-119
    • /
    • 1987
  • The corrosion fatigue crack propagation characteristics of SS41 steel in 3.5% NaCl solution have been evaluated for loading frequencies of 1Hz and 0.2Hz. A sine wave loading profile was used for fatigue testing. Each test was carried out at a constant stress ratio, R(0.1). The main results are summarized as follows; 1. Fatigue crack propagation rate was higher in 3.5% NaCl solution than in air, higher in the base metal than in the weld metal, and higher at f =0.2Hz than at f =1Hz. 2. The crack closure level of the base metal was not influenced by cyclic frequencies, but that of the weld metal was much influenced. 3. When the crack closure effect was eliminated in the evaluation of crack propagation characteristics by using $\Delta K_{eff}$, the envirommental influence was distinctly observed. At the base metal, crack propagation rate was enhanced by the hydrogen embrittlement, and the weld metal was reduced by the crac closure. 4. There was clearly observed hydrogen embrittlement and severely corroded aspect at fracture surface of lower frequency than that of higher frequency, and at that of base metal than that of the weld metal.

  • PDF

A Study of Variation of Wave-induced Stresses in a Seabed (파랑하중에 의한 해저지반의 응력변화에 대한 연구)

  • 장병욱;박영권;우철웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.79-89
    • /
    • 1996
  • It is expected that the soil hehaviours in the seahed subjected to cyclic wave loads are much different from that on the ground Cyclic shear stresses developed below the ocean bed as a result of a passing wave train may progressively build up pore pressure in certain soils. Such build-up pore pressure may be developed dynamic behaviour such as liquefaction and significant deformation of the seabed. Currently available analytical and testing methods for the seabed subjected to cyclic wave loads are not general. The purpose of the study are to provide a test method in laboratory and to analyse the mechanism of wave-induced stresses and liquefactions potentials of the unsaturated silty marine sand. It is showed that the test set-up made especially for this study delivers exactly oscillatory wave pressures of the form of sine function. Laboratory test results defining the cyclic shear strength of the unsaturated porous medium that is homogenously sedimented. It is understood that the pore water pressure due to induced-waves is not accumulated as the wave number increases but reveals periodical change on the still water surface. The magnitude of the pore water pressure tends to be attenuated radically with a certain time lag under the action of both high and low waves as depth increases.

  • PDF

A Comparative Study of Material Flow Stress Modeling by Artificial Neural Networks and Statistical Methods (신경망을 이용한 HSLA 강의 고온 유동응력 예측 및 통계방법과의 비교)

  • Chun, Myung-Sik;Yi, Joon-Jeong;Jalal, B.;Lenard, J.G.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.828-834
    • /
    • 1997
  • The knowledge of material stress-strain behavior is an essential requirement for design and analysis of deformation processes. Empirical stress-strain relationship and constitutive equations describing material behavior during deformation are being widely used, despite suffering some drawbacks in terms of ease of development, accuracy and speed. In the present study, back-propagation neural networks are used to model and predict the flow stresses of a HSLA steel under conditions of constant strain, strain rate and temperature. The performance of the network model is comparedto those of statistical models on rate equations. Well-trained network model provides fast and accurate results, making it superior to statistical models.

Analysis of Spectral Fatigue Damage of Linear Elastic Systems with Different High Cyclic Loading Cases using Energy Isocline (에너지 등고선을 이용한 고주파 가진 조건들에 따른 선형 시스템의 피로 손상도 분석)

  • Shin, Sung-Young;Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.840-845
    • /
    • 2014
  • Vibration profiles consist of two kinds of pattern, random and harmonic, at general engineering problems and the detailed vibration test mode of a target system is decided by the spectral condition that is exposed under operation. In moving mobility, random responses come generally from road source; whereas the harmonic responses are triggered from rotating machinery parts, such as combustion engine or drive shaft. Different spectral input may accumulate different damage in frequency domain since the accumulated fatigue damage dependent on the pattern of input spectrum in high cyclic loading condition. To evaluate the sensitivity of spectral damage according to different loading conditions, a linear elastic system is introduced to conduct a uniaxial vibration testing. Measured data, acceleration and strain, is analyzed using energy isocline function and then, the calculated fatigue damage is compared by different loading cases, random and harmonic.

Mechanical verification logic and first test results for the Euclid spacecraft

  • Calvi, Adriano;Bastia, Patrizia;Suarez, Manuel Perez;Neumann, Philipp;Carbonell, Albert
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.251-269
    • /
    • 2020
  • Euclid is an optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and the formation of structures over cosmological timescales. The Euclid spacecraft mechanical architecture comprises the Payload Module (PLM) and the Service Module (SVM) connected by an interface structure designed to maximize thermal and mechanical decoupling. This paper shortly illustrates the mechanical system of the spacecraft and the mechanical verification philosophy which is based on the Structural and Thermal Model (STM), built at flight standard for structure and thermal qualification and the Proto Flight Model (PFM), used to complete the qualification programme. It will be submitted to a proto-flight test approach and it will be suitable for launch and flight operations. Within the overall verification approach crucial mechanical tests have been successfully performed (2018) on the SVM platform and on the sunshield (SSH) subsystem: the SVM platform static test, the SSH structure modal survey test and the SSH sine vibration qualification test. The paper reports the objectives and the main results of these tests.

Cervical stabilization exercise using the Sling system (슬링(Sling) 시스템을 이용한 경부 안정화 운동)

  • Kwon, Jae-Hoak;Cho, Mi-Ju;Park, Min-Chull;Kim, Suhn-Yeop
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.8 no.2
    • /
    • pp.57-71
    • /
    • 2002
  • Cervical pain is a rapid increase that is owing to a flexion-extension whiplash injury, unappropriated posture, chronical repetition injury from abdominal position of head and neck, excessive repeating work, chronical deficiency of excercise. Because of that is bring about muscle unbalance, tightness of cervical extensor muscle, weakness of cervical deep flexor muscles, instability of cervical region and reduction of proprioceptive sensor. Recent the role of muscle is more emphasized for preservation of sine stabilization. And cognition of integrated muscular system, importance for the operation and relation is increased to maintain stability of the motor system and pertinent function. Therefore we are going to introduce the sling exercise and stabilization exercise method for advanced efficient of cervical and upper limb and for the muscle strengthening to importance cervical stabilization through neurological program as control the reaction of cervical stabilization. Sling exercise therapy(SET) concept consists of a system of diagnosis and treatment. The system of diagnosis involves testing the muscle's tolerance through progressive loading in open and close kinetic chains. The SET system contains elements such as relaxation, increasing the range of movement, traction, training the stabilizing musculature, sensory-motor exercises, training in open and close kinetic chains, dynamic training of the mobilizing musculature, cardiovascular exercise, group exercise, personal exercise at home Sensory-motor training is an essential element of the SET concept. The emphasis is on closed kinetic chain exercise on an unstable surface, there by achieving optimum stimulation of the sensory-motor apparatus.

  • PDF

Characteristics of Disk-type Linear Ultrasonic Motor for Application to x-y Stage

  • Lim Kee-Joe;Park Seong-Bee;Yun Yong-Jin;Lee Kee-Young;Kang Seong-Hwa;Lee Jong-Sub;Jeong Su-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.101-105
    • /
    • 2006
  • In this paper, a disk-type ultrasonic motor using a combination of radial and bending vibration modes is newly designed and fabricated. The characteristics of the test motor are also measured. By means of traveling elastic wave induced at the surface of circumference of the elastic disk, a steel bar in contact with the surface of circumference of the elastic disk bonded onto the piezoelectric ceramic disks is driven in both directions by changing the sine and cosine voltage inputs. The stator of the motor is composed of two sheets of piezoelectric ceramic disks to bond onto both surfaces of an elastic disk, respectively. As a result, the diameter of the elastic body is increased and the resonant frequency is decreased. The resonant frequency of the stator is about 92 kHz, which is composed with piezoelectric ceramic disks of 28 mm in diameter and 2 mm in thickness, and an elastic body of 32 mm in diameter and 2 mm in thickness. A driving voltage of 20 VPP Produces 200 rpm with a torque of 1Nm and an efficiency of about 10%.

Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control

  • Yu, Yang;Royel, Sayed;Li, Jianchun;Li, Yancheng;Ha, Quang
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.943-966
    • /
    • 2016
  • Recently, magnetorheological elastomer (MRE) material and its devices have been developed and attracted a good deal of attention for their potentials in vibration control. Among them, a highly adaptive base isolator based on MRE was designed, fabricated and tested for real-time adaptive control of base isolated structures against a suite of earthquakes. To perfectly take advantage of this new device, an accurate and robust model should be built to characterize its nonlinearity and hysteresis for its application in structural control. This paper first proposes a novel hysteresis model, in which a nonlinear hyperbolic sine function spring is used to portray the strain stiffening phenomenon and a Voigt component is incorporated in parallel to describe the solid-material behaviours. Then the fruit fly optimization algorithm (FFOA) is employed for model parameter identification using testing data of shear force, displacement and velocity obtained from different loading conditions. The relationships between model parameters and applied current are also explored to obtain a current-dependent generalized model for the control application. Based on the proposed model of MRE base isolator, a second-order sliding mode controller is designed and applied to the device to provide a real-time feedback control of smart structures. The performance of the proposed technique is evaluated in simulation through utilizing a three-storey benchmark building model under four benchmark earthquake excitations. The results verify the effectiveness of the proposed current-dependent model and corresponding controller for semi-active control of MRE base isolator incorporated smart structures.

Feasibility study of the beating cancellation during the satellite vibration test

  • Bettacchioli, Alain
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.225-237
    • /
    • 2018
  • The difficulties of satellite vibration testing are due to the commonly expressed qualification requirements being incompatible with the limited performance of the entire controlled system (satellite + interface + shaker + controller). Two features cause the problem: firstly, the main satellite modes (i.e., the first structural mode and the high and low tank modes) are very weakly damped; secondly, the controller is just too basic to achieve the expected performance in such cases. The combination of these two issues results in oscillations around the notching levels and high amplitude beating immediately after the mode. The beating overshoots are a major risk source because they can result in the test being aborted if the qualification upper limit is exceeded. Although the abort is, in itself, a safety measure protecting the tested satellite, it increases the risk of structural fatigue, firstly because the abort threshold has been already reached, and secondly, because the test must restart at the same close-resonance frequency and remain there until the qualification level is reached and the sweep frequency can continue. The beat minimum relates only to small successive frequency ranges in which the qualification level is not reached. Although they are less problematic because they do not cause an inadvertent test shutdown, such situations inevitably result in waiver requests from the client. A controlled-system analysis indicates an operating principle that cannot provide sufficient stability: the drive calculation (which controls the process) simply multiplies the frequency reference (usually called cola) and a function of the following setpoint, the ratio between the amplitude already reached and the previous setpoint, and the compression factor. This function value changes at each cola interval, but it never takes into account the sensor signal phase. Because of these limitations, we firstly examined whether it was possible to empirically determine, using a series of tests with a very simple dummy, a controller setting process that significantly improves the results. As the attempt failed, we have performed simulations seeking an optimum adjustment by finding the Least Mean Square of the difference between the reference and response signal. The simulations showed a significant improvement during the notch beat and a small reduction in the beat amplitude. However, the small improvement in this process was not useful because it highlighted the need to change the reference at each cola interval, sometimes with instructions almost twice the qualification level. Another uncertainty regarding the consequences of such an approach involves the impact of differences between the estimated model (used in the simulation) and the actual system. As limitations in the current controller were identified in different approaches, we considered the feasibility of a new controller that takes into account an estimated single-input multi-output (SIMO) model. Its parameters were estimated from a very low-level throughput. Against this backdrop, we analyzed the feasibility of an LQG control in cancelling beating, and this article highlights the relevance of such an approach.