• Title/Summary/Keyword: simultaneous removal

Search Result 299, Processing Time 0.025 seconds

Management of Vocal Cord Palsy during Thyroid Surgery (갑상선 수술 시의 성대마비의 처치)

  • Choi Hong-Shik;Kim Se-Heon;Park Kuk-Jin;Kim Kwang-Moon;Hong Won-Pyo
    • Korean Journal of Head & Neck Oncology
    • /
    • v.14 no.1
    • /
    • pp.27-34
    • /
    • 1998
  • Objectives, Materials & Methods: To prevent deterioration of postoperative voice due to iatrogenic transection of the recurrent laryngeal nerve during the thyroid surgery, intraoperative medialization of the membranous vocal cord by type I thyroplasty together with direct epineurial neurorraphy was done on 2 cases of benign thyroid lesion. To improve the quality of voice together with complete removal of advanced thyroid carcinoma, intraoperative vocal cord medialization on the lesion side together with total thyroidectomy was done by type I thyroplasty in 2 cases and combined procedure by arytenoid adduction and type I thyroplasty in another 2 cases. Results: The resultant voice of the iatrogenic injury cases was relatively tolerable. The voice of the combined procedure was better than that of type I thyroplasty cases for the intraoperative rehabilitation cases. Not only for the preoperative evaluation of the severity of the nerve lesion but also the prognosis will be expected by use of laryngeal EMG in the cases of thyroid cacer with vocal cord palsy. Conclusion: Intraoperative simultaneous rehabilitation for the vocal cord palsy during thyroid surgery is beneficial for the patients.

  • PDF

A Study on Synthetic Method and Material Analysis of Calcium Ammine Chloride as Ammonia Transport Materials for Solid SCR (Solid SCR용 암모니아 저장물질인 Calcium Ammine Chloride의 합성방법 및 물질분석 연구)

  • Shin, Jong Kook;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.199-207
    • /
    • 2015
  • Solid materials of ammonia sources with SCR have been considered for the application of lean NOx reduction in automobile industry, to overcome complex problems of liquid urea based SCR. These solid materials produce ammonia gas directly with proper heating and can be packaged by compact size, because of high volumetric ammonia density. Among ammonium salts and metal ammine chlorides, calcium ammine chloride was focused on this paper due to low decomposition temperature. In order to make calcium ammine chloride in lab-scale, simple reactor and glove box was designed and built with ammonium gas tank, regulator, and sensors. Basic test conditions of charging ammonia gas to anhydrous calcium chloride are chosen from equilibrium vapor pressure by Van't Hoff plot based on thermodynamic properties of materials. Synthetic method of calcium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%) from simple weight calculations which were confirmed by IC. Also, lab-made calcium ammine chloride were analyzed by TGA and DSC to clarify decomposition step in the equations of chemical reaction. To understand material characteristics for lab-made calcium ammine chloride, DA, XRD and FT-IR analysis were performed with published data of literature. From analytical results, water content in lab-made calcium ammine chloride can be discovered and new test procedures of water removal were proposed.

Effect of Ion-Pair on Jejunal and Nasal Absorption of Cefotaxime (세포탁심의 공장 및 비점막흡수에 미치는 이온쌍의 효과)

  • Park, Gee-Bae;Jeon, Seung;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.4
    • /
    • pp.353-363
    • /
    • 1995
  • The purpose of this study was to investigate the intestinal and nasal absorption enhancement of cefotaxime (CTX) by ion-pairing with counterions and to design an effective oral and intranasal drug delivery system for antibiotics. Counterions for absorption promotion were cationic surfactants [cetylpyridinium chloride (CP), cetrimide (CT) and benzalkonium chloride (BA)]. In the presence of counterions, the apparent partition coefficient of cefotaxime was increased depending on the molar concentration of the counterions. Anion interference was observed for ion-pairing of cefotaxime with counterions because of the counterbalance between an anion and counterions. The present study employed the in situ simultaneous nasal and intestinal perfusion technique in rats. The apparent permeabilities $(P_{app})$ of cefotaxime were $1.43{\pm}0.04{\times}10^{-5}\;cm/sec(mean{\pm}S.E)$ in the nasal cavity and 0 in the jejunum, respectively, which indicated that the intrinsic absorptivity of cefotaxime was greater in the nasal cavity than in the jejunum. When ionupairing formers were used, the decreasing order of apparent cefotaxime permeability $(P_{app},\;10^{-5}\;cm/sec)$, corrected for surface area of absorption, was as followings: $BA\;(7.50{\pm}0.36)\;>\;CT\;(4.92{\pm}0.24)\;>\;CP\;(3.01{\pm}0.17)$ in the jejunum and $BA\;(22.31{\pm}1.36)\;>\;CP\;(18.24{\pm}0.81)\;>\;CT \;(16.22{\pm}1.87)$ in the nasal cavity. The increase in permeability of cefotaxime was about 13-fold in the rat nasal cavity and was marked in the rat jejunum for ion-pairing with counterions as compared to those without ion-pairing. The damages of jejunal and nasal mucosal membrane by counterions were observed within approximately 2hrs after removal of ion-pair of cefotaxime with counterions from the nasal cavity and jejunum. These results suggest that CP can be used as an ion-pairing former in the jejunum and CP and CT can be used as ion-pairing formers in the nasal cavity for cefotaxime, as well as for poorly absorbed drugs with a negative charge due to ionization.

  • PDF

Simultaneous Removal of Nitrate and Trichloroethylene by Zero Valent Iron and Peat (영가철과 피트를 이용한 질산성질소와 트리클로로에틸렌의 제거)

  • Min, Jee-Eun;Kim, Mee-Jeong;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1074-1081
    • /
    • 2006
  • As common pollutants in surface and groundwater, nitrate nitrogen($NO_3-N$) and trichloroethylene(TCE) can be chemically and biologically reduced by zero valent iron(ZVI) and peat soil. In batch microcosm experiments, chemical reduction of TCE and nitrate was supported by hydrogen from ZVI. For biological degradation of TCE and denitrification peat soil was introduced. ZVI reduced TCE, while peat provided TCE sorption site and microbes performing biological degradation. Nitrate reduction was also achieved by hydrogen from ZVI. In addition, indirect evidence of denitrification was observed. More reduction of TCE and nitrate was achieved by ZVI+peat treatment however nitrated reduction was hindered in the presence of TCE in the system due to the competition for hydrogen. TCE reduction mechanism was more dependent on ZVI, while nitrate was peat-dependent. Hydrogen and methane concentration showed that peat had various anaerobic denitryfing and halorespiring bacteria.

The Characteristic Floc Growth in Coagulation and Flocculation Processes (응집 공정상에서 플럭의 성장 특성 고찰)

  • Heo, Jae-Yong;Kang, Ik-Joong;Lee, Sang-Wha
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.207-215
    • /
    • 2006
  • The characteristic floc growth of Al-based coagulants was investigated in the aspect of mixing intensity and visualization of generated flocs during coagulation and flocculation processes. Zeta potential of turbid particles in the artificial water nearly approached to zero at pH 8-9, in which TDS and conductivity were minimized. The removal rate of turbidity and phosphate was maximized at the optimal mixing intensity of rapid and slow mixing stages. After the rapid mixing stage of coagulation process, small particles ($3-5{\mu}m$) were abruptly generated, and higher mixing intensity made more numbers of flocs. With the progress of slow mixing stage, the number of small particles were decreased with the simultaneous increase of intermediate particles ($7-21{\mu}m$). The number of large particles (>$23{\mu}m$) were maximized at the lowest rapid mixing intensity of $95.1sec^{-1}$, whereas small particles (<$5{\mu}m$) were maximized at the highest rapid mixing intensity of $760.7sec^{-1}$.

A Selective Determination Method of Inorganic and Organic Mercury (무기수은과 유기수은의 선택정량)

  • Kim, Chon Han
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.8
    • /
    • pp.392-398
    • /
    • 1997
  • A method of selective determination of inorganic and organic mercury compounds has been described. The $CHCl_3$ solution of a high molecular quaternary alkylammonium salt, Aliquat 336 was used for the simultaneous preconcentration of both inorganic, $Hg^{2+}$ as its thiocyanate complex, and organic mercury compounds, $CH_3HgCl$ and $C_2H_3O_2$ $HgC_6H_5$ by extraction from their aqueous solution. Selective separation of the inorganic mercury from the extract was followed by stripping with 3 M $HClO_4 $ solution for the subsequent determination by CVAAS. Organic mercury was also determined by CVAAS after removal of $CHCl_3solvent$ from the extract and decomposition of the residue with 4% $KMnO_4 $-1 MH_2$S0_4$. The mixtures of inorganic and organic mercury compounds contained 1.0 $\mug$ as Hg in 50 mL of sample solution(0.02 ${\mu}gHg/mL$) were analysed within ${\pm}6%$ by absolute errors.

  • PDF

Characteristics of Microbial Arsenic Oxidation under Denitrification Environment (미생물에 의한 탈질 과정 동안의 비소 동시 산화 특성 평가)

  • Oh, Seolran;Kim, Dong-Hun;Moon, Hee Sun
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.4
    • /
    • pp.1-10
    • /
    • 2019
  • Recently, groundwater contamination by mixed occurrence of arsenic (As) and nitrate ($NO_3{^-}$) has been a serious environmental issue all around world. In this study, we investigated the microbial As(III) oxidation characteristic under denitrification process to examine the feasibility of the microbial consortia in wetland sediment to simultaneously treat these two contaminants. The detail objectives of this study were to investigate the effects of $NO_3{^-}$ on the oxidation of As(III) in anaerobic environments and observe the microbial community change during the As oxidation under denitrification process. Results showed that the As(III) was completely and simultaneously oxidized to As(V) under denitrification process, however, it occurred to a much less extent in the absence of sediment or $NO_3{^-}$. In addition, the significant increase of As(III) oxidation rate in the presence of $NO_3{^-}$ suggested the potential of As oxidation under denitrification by indigenous microorganisms in wetland sediment. Genera Pseudogulbenkiania, and Flavisolibacter were identified as predominant microbial species driving the redox process. Conclusively, this study can provide useful information on As(III) oxidation under denitrifying environment and contribute to develop an effective technology for simultaneous removal of As(III) and $NO_3{^-}$ in groundwater.

Trend of Nitrogen Oxide Reduction Technologies in Cement Industry (시멘트 산업에서의 질소산화물 저감 기술 동향)

  • Seo, JunHyung;Kim, YoungJin;Cho, KyeHong;Cho, JinSang;Han, KyungHo;Yoon, DoYoung
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.114-124
    • /
    • 2020
  • In the cement industry, NOx emission is recognized as an important problem, and NOx reduction technologies can be divided into process change, staged combustion, low NOx burner, selective non-catalytic reduction and selective catalytic reduction method. The operation of the selective non-catalytic reduction method, which is the most used in the cement industry, is expected to make it difficult to meet the emission standards to be strengthened in the future, and it is necessary to improve equipment such as SCR and secure technologies. Recently, we are developing technologies for simultaneous application of SNCR and SCR, dust and denitrification filter technology, and removal technology using NO oxidation.

Operation Parameters on Biological Advanced Treatment of Phenolic High-Strength Wastewater (페놀계 고농도 유기성 폐수의 생물학적 고도처리 운전인자)

  • Hong, Sung-Dong;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.797-806
    • /
    • 2000
  • The objectives were to compare the biodegradable threshold concentrations of phenol with the different composition of the influent carbon source and examine the SMA (Specific Methanogenic Activity)and the possibility of simultaneous removal of high-strength organics and nitrogen compounds in UASB(Upflow Anaerobic Sludge Blanket) - PBR(Packed Bed Reactor) process. The results showed that UASB reactors were efficient to remove phenol and phenol + glucose from synthetic wastewater. At phenol conc, of 600 mg/L and SCOD conc. of 2100 mg/L in UASB reactor(with only phenol as substrate), the removal efficiencies of phenol and SCOD were over 99% and 93% respectively, under MLVSS of 20 g. The activity of microorganism was $0.112g\;phenol/g\;VSS{\cdot}d$, $0.351g\;SCOD/g\;VSS{\cdot}d$. The gas production rate was $0.115L/g\;VSS{\cdot}d$ and $CH_4$ content in gas was about 70%. At phenol conc. of 760 mg/L and SCOD conc. of 4300 mg/L in UASB reactor( with phenol + glucose as substrates), the removal efficiencies of phenol and of SCOD were over 99% and 90% respectively, under MLVSS of 20 g. The activity of microoganism was $0.135g\;phenol/g\;VSS{\cdot}d$, $0.696g\;SCOD/g\;VSS{\cdot}d$. The gas production rate was $0.257L/g\;VSS{\cdot}d$ and $CH_4$ content in gas was about 70%. Serum bottle test showed that the activity of granule was inhibited over 1600 mg/L phenol conc, and denitrification and methanogenesis simultaneously took place in UASB granules under co-substrates conditions. PBR reactor packed with cilium type media, was efficient in nitrification. In condition of $0.038kg\;NH_4-N/m^3-media{\cdot}d$. 10~12 mg/L phenol conc. and 200~500 mg/L SCOD conc., nitrification efficiency was over 90% and phenol removal efficiency was over 98%.

  • PDF

Effect of SO2 on the Simultaneous Removal of Mercury and NOx over CuCl2-loaded V2O5-WO3/TiO2 SCR Catalysts (CuCl2가 담지된 V2O5-WO3/TiO2 SCR 촉매에 의한 수은 및 NOx 동시 제거에서 SO2의 영향)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.38-45
    • /
    • 2022
  • CuCl2-loaded V2O5-WO3/TiO2 catalyst showed excellent activity in the catalytic oxidation of elemental mercury to oxidized mercury even under SCR condition in the presence of NH3, which is well known to significantly inhibit the oxidation activity of elemental mercury by HCl. Moreover, it was confirmed that, when SO2 was present in the reaction gas together with HCl, excellent elemental mercury oxidation activity was maintained even though CuCl2 supported on the catalyst surface was converted to CuSO4. This is thought to be because not only HCl but also the SO4 component generated on the catalyst surface promotes the oxidation of elemental mercury. However, in the presence of SO2, the total mercury balance before and after the catalytic reaction was not matched, especially as the concentration of SO2 increased. In order to understand the cause of this, further studies are needed to investigate the effect of SO2 in the SnCl2 aqueous solution employed for mercury species analysis and the effect of sulfate ions generated on elemental mercury oxidation. It was confirmed that SO2 also promotes NOx removal activity, which is thought to be because the increase in acid sites by SO4 generated on the catalyst surface by SO2 facilitates NH3 adsorption. The composition change and structure of the components present on the catalyst surface under various reaction conditions were measured by XRD and XRF. These measurement results were presented as a rational explanation for the results that SO2 enhances the oxidation activity of elemental mercury and the NOx removal activity in this catalyst system.