• Title/Summary/Keyword: simultaneous differential equation

Search Result 18, Processing Time 0.026 seconds

SIMULTANEOUS FOREGROUND AND BACKGROUND SEGMENTATION WITH LEVEL SET FUNCTION

  • Lee, Suk-Ho
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.4
    • /
    • pp.315-321
    • /
    • 2009
  • In this paper, a level set based energy functional is proposed, the minimization of which results in simultaneous reference background image modeling and foreground segmentation. Due to the mutual constraint of the two processes, a good estimate of the background can be obtained with a small number of frames, and due to the use of the level set, an Euler-Lagrange equation that directly solves the problem can be derived.

  • PDF

An Approach to Walsh Functions for Parameter Estimation of Distributed Parameter Systems (WALSH함수의 접근에 의한 분포정수계의 파라메타 추정)

  • 안두수;배종일
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.7
    • /
    • pp.740-748
    • /
    • 1990
  • In this paper, we consider the problem of parameter estimation, i.e., definding the internal structure of a linear distribution parameter system from its input/output data. First, a linear partial differential equation describing the system is double-integrated with respect to two variables and then transformed into an integral equation. Next the Walsh Operation Matrix for Walsh function and their integration are introduced to transform the integral equation into algebraic simultaneous equations. Finally, we develop an algorithm to estimate the parameters of the linear distributed parameter system from the simple linear algebraic simultaneous equations. It is also shown that our algorithm could be effective in real time data processing since it uses the Fast Walsh Transform.

  • PDF

Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates

  • Civalek, Omer;Ulker, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • Numerical solution to linear bending analysis of circular plates is obtained by the method of harmonic differential quadrature (HDQ). In the method of differential quadrature (DQ), partial space derivatives of a function appearing in a differential equation are approximated by means of a polynomial expressed as the weighted linear sum of the function values at a preselected grid of discrete points. The method of HDQ that was used in the paper proposes a very simple algebraic formula to determine the weighting coefficients required by differential quadrature approximation without restricting the choice of mesh grids. Applying this concept to the governing differential equation of circular plate gives a set of linear simultaneous equations. Bending moments, stresses values in radial and tangential directions and vertical deflections are found for two different types of load. In the present study, the axisymmetric bending behavior is considered. Both the clamped and the simply supported edges are considered as boundary conditions. The obtained results are compared with existing solutions available from analytical and other numerical results such as finite elements and finite differences methods. A comparison between the HDQ results and the finite difference solutions for one example plate problem is also made. The method presented gives accurate results and is computationally efficient.

Bending of steel fibers on partly supported elastic foundation

  • Hu, Xiao Dong;Day, Robert;Dux, Peter
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.657-668
    • /
    • 2001
  • Fiber reinforced cementitious composites are nowadays widely applied in civil engineering. The postcracking performance of this material depends on the interaction between a steel fiber, which is obliquely across a crack, and its surrounding matrix. While the partly debonded steel fiber is subjected to pulling out from the matrix and simultaneously subjected to transverse force, it may be modelled as a Bernoulli-Euler beam partly supported on an elastic foundation with non-linearly varying modulus. The fiber bridging the crack may be cut into two parts to simplify the problem (Leung and Li 1992). To obtain the transverse displacement at the cut end of the fiber (Fig. 1), it is convenient to directly solve the corresponding differential equation. At the first glance, it is a classical beam on foundation problem. However, the differential equation is not analytically solvable due to the non-linear distribution of the foundation stiffness. Moreover, since the second order deformation effect is included, the boundary conditions become complex and hence conventional numerical tools such as the spline or difference methods may not be sufficient. In this study, moment equilibrium is the basis for formulation of the fundamental differential equation for the beam (Timoshenko 1956). For the cantilever part of the beam, direct integration is performed. For the non-linearly supported part, a transformation is carried out to reduce the higher order differential equation into one order simultaneous equations. The Runge-Kutta technique is employed for the solution within the boundary domain. Finally, multi-dimensional optimization approaches are carefully tested and applied to find the boundary values that are of interest. The numerical solution procedure is demonstrated to be stable and convergent.

Design Method for a Total Internal Reflection LED Lens with Double Freeform Surfaces for Narrow and Uniform Illumination

  • Yang, Jae Suk;Park, Jae-Hyeung;O, Beom-Hoan;Park, Se-Geun;Lee, Seung Gol
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.614-622
    • /
    • 2016
  • In this paper, we propose a novel differential equation method for designing a total internal reflection (TIR) LED lens with double freeform surfaces. A complete set of simultaneous differential equations for the method is derived from the condition for minimizing the Fresnel loss, illumination models, Snell’s Law of ray propagation, and a new constraint on the incident angle of a ray on the light-exiting surface of the lens. The last constraint is essential to complete the set of simultaneous differential equations. By adopting the TIR structure and applying the condition for minimizing the Fresnel loss, it is expected that the proposed TIR LED lens can have a high luminous flux efficiency, even though its beam-spread angle is narrow. To validate the proposed method, three TIR LED lenses with beam-spread angles of less than 22.6° have been designed, and their performances evaluated by ray tracing. Their luminous flux efficiencies could be obviously increased by at least 35% and 5%, compared to conventional LED lenses with a single freeform surface and with double freeform surfaces, respectively.

AN APPROPRIATE INFLOW MODEL FOR SIMULTANEOUS DISSOLUTION AND DEGRADATION

  • Lee, Ju-Hyun;Kang, Sung-Kwon;Choi, Hoo-Kyun
    • Honam Mathematical Journal
    • /
    • v.31 no.1
    • /
    • pp.109-124
    • /
    • 2009
  • Based on the observed data for Clarithromycin released, three commonly used inflow models: the power, the exponential, and the logarithmic models are considered. Among them, the power model is used most in practice for simplicity. Using the numerical parameter estimation techniques, the parameters appeared in the model equations are estimated. Through the numerical estimation results using the several experimental data sets, the exponential model turns out to be best among the three models. More specifically, the sum of squares of absolute errors and the sum of squares of relative errors for the exponential model are reduced by 80-95 % for the experimental data sets and 60-90 % for the noise added data sets compared with those for the power and logarithmic models. A typical experimental data set is used in this paper to show the estimation method and its numerical results. The proposed numerical method and its algorithm are designed for estimating the parameters appeared in the model differential equations for which the exact form of the solution is unknown in general. The methodology developed can be applied to more general cases such as the nonlinear ordinary differential equations or the partial differential equations.

The Effect of Neglecting the Longitudinal Moment Terms on the Natural Frequency of Laminated Plates with Increasing Aspect Ratio (보강재 보강 형태에 따른 특별직교 이방성 적층복합판의 고유진동수에 대한 종방향 모멘트 무시효과)

  • 김덕현;김경진;이정호;박정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.109-116
    • /
    • 1998
  • The method of vibration analysis used is the one developed by the senior author. He developed and reported, in 1974, a simple but exact method of calculating the natural frequency of beam and tower structures with irregular cross-sections and attached mass/masses. Since 1989, this method has been extended to two-dimensional problems with several types of given conditions and has been reported at several international conferences. This method uses the deflection influence surfaces. The finite difference method is used for this purpose, in this paper. In order to reduce the pivotal points required, the three simultaneous partial differential equations of equilibrium with three dependent variables, w, M$_{x}$, and $M_{y}$, are used instead of the one forth order partial differential equation. By neglecting the M$_{x}$ terms, the size of the matrices needed to solve the resulting linear equations are reduced to two thirds of the "non-modified" equations.tions.

  • PDF

RADIATIVE TRANSFER IN A SCATTERING SPHERICAL ATMOSPHERE

  • HONG S. S.;PARK Y.-S.;KWON S. M.;PARK C.;WEINBERG J. L.
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.41-57
    • /
    • 2002
  • We have written a code called QDM_sca, which numerically solves the problem of radiative transfer in an anisotropically scattering, spherical atmosphere. First we formulate the problem as a second order differential equation of a quasi-diffusion type. We then apply a three-point finite differencing to the resulting differential equation and transform it to a tri-diagonal system of simultaneous linear equations. After boundary conditions are implemented in the tri-diagonal system, the QDM_sca radiative code fixes the field of specific intensity at every point in the atmosphere. As an application example, we used the code to calculate the brightness of atmospheric diffuse light(ADL) as a function of zenith distance, which plays a pivotal role in reducing the zodiacal light brightness from night sky observations. On the basis of this ADL calculation, frequent uses of effective extinction optical depth have been fully justified in correcting the atmospheric extinction for such extended sources as zodiacal light, integrated starlight and diffuse galactic light. The code will be available on request.

Mode Shape of Timoshenko Beam Having Different Circular Cross-Sections (다단 티모센코 원형단면봉의 연속 고유모우드)

  • 전오성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.118-123
    • /
    • 1997
  • The study suggests a method to analyze the vibration of the multi-stepped beam having the different circular cross-sections. The rotatory inertia, the shear deformation and the torque applied at both ends of the beam are considered in the governing equation. The complex displacement and the variable separation are introduced to derive the solution of the equation of each uniform beam element having constant cross-section. Then boundary conditions are applied to solve the total system. This method uses the mathematically exact solutions unlike numerical method such as the finite element method in solving the problem having the simultaneous differential equations of Timoshenko beam theory. the natural frequencies and the corresponding mode shapes are precise, especially the mode shapes are continuous.

  • PDF

Analysis on the thermal development of radiatively participating pipe flow with nonaxisymmetric convective heat loss (비축대칭 대류열손실 경계조건하에서 원관내 복사에 관여하는 매질의 층류 열적 발달의 수치해석)

  • ;;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2995-3002
    • /
    • 1995
  • The cooling problem of the hot internal pipe flow has been investigated. Simultaneous conduction, convection, and radiation were considered with azimuthally varying convective heat loss at the pipe wall. A complex, nonlinear integro-differential radiative transfer equation was solved by the discrete ordinates method (or called S$_{N}$ method). The energy equation was solved by control volume based finite difference technique. A parametric study was performed by varying the conduction-to-radiation parameter, optical thickness, and scattering albedo. The results have shown that initially the radiatively active medium could be more efficiently cooled down compared with the cases otherwise. But even for the case with dominant radiation, as the medium temperature was lowered, the contribution of conduction became to exceed that of radiation.n.