• Title/Summary/Keyword: simulation of hydraulic system.

Search Result 711, Processing Time 0.027 seconds

Basic Characteristics of a Two Stage Directional Control Valve with Pilot Spool Assembled in Main Spool Coaxially (파일럿 스풀이 주 스풀에 동심 내장된 2단 방향제어밸브의 기초적 특성)

  • Lee, I.Y.;Son, J.M.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.102-108
    • /
    • 2010
  • In this study, the authors investigate the basic characteristics of a two stage directional control valve with pilot spool assembled in main spool coaxially. The step response characteristics and effects of major design parameters' values on valve performances arc clarified through numerical simulations. In addition, the authors examined the possibility of applying the object valve for this study as a proportional control valve. Based on the numerical simulation results, new design values for the reformed design as a proportional control valve were suggested.

A Study on In-Process Performance Diagnosis of Hydraulic Servovalves - First Report : Position Control System - (유압서보밸브의 인-프로세스 성능 진단에 관한 연구 I - 유압실린더 위치제어계의 경우 -)

  • Kim S.D.;Kim K.H.;Song J.S.;Ham Y.B.;Lee J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • In this paper, an in-process diagnosis method for performance of position control servo system was studied, which was based upon null bias, slew-rate ratio and delay time measurement. Slew-rate ratio and delay time were analyzed by theoretical analysis, computer simulation and experiment. As a result of these analysis, when spool of servovalve was weared, slew-rate ratio was decreased and delay time was increased.

  • PDF

On the Safety and Performance Demonstration Tests of Prototype Gen-IV Sodium-Cooled Fast Reactor and Validation and Verification of Computational Codes

  • Kim, Jong-Bum;Jeong, Ji-Young;Lee, Tae-Ho;Kim, Sungkyun;Euh, Dong-Jin;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1083-1095
    • /
    • 2016
  • The design of Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) has been developed and the validation and verification (V&V) activities to demonstrate the system performance and safety are in progress. In this paper, the current status of test activities is described briefly and significant results are discussed. The large-scale sodium thermal-hydraulic test program, Sodium Test Loop for Safety Simulation and Assessment-1 (STELLA-1), produced satisfactory results, which were used for the computer codes V&V, and the performance test results of the model pump in sodiumshowed good agreement with those in water. The second phase of the STELLA program with the integral effect tests facility, STELLA-2, is in the detailed design stage of the design process. The sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger performance test, the intermediate heat exchanger test facility, and the test facility for the reactor flow distribution are underway. Flow characteristics test in subchannels of a wire-wrapped rod bundle has been carried out for safety analysis in the core and the dynamic characteristic test of upper internal structure has been performed for the seismic analysis model for the PGSFR. The performance tests for control rod assemblies (CRAs) have been conducted for control rod drive mechanism driving parts and drop tests of the CRA under scram condition were performed. Finally, three types of inspection sensors under development for the safe operation of the PGSFR were explained with significant results.

Numerical Study on Hydraulic Fluid Flows Within Axial Piston Pumps (액셜 피스톤 펌프내 유압유 유동에 대한 수치해석적 연구)

  • Jeong, Jong-Hyun;Kim, Jong-Ki;Suh, Yong Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • Axial piston pumps have been widely used as power sources for hydraulic systems, but studies on the fluid flow within the pump have been usually performed using 1-D analysis because of the difficulties in considering the fluid compressibility, high-speed revolution, variation of the flow rate, and complicated geometry. The goal of this study was to understand the hydraulic fluid flow within axial piston pumps by using the 3-D numerical method and the process of generating discharge pressure ripples. To improve the convergence and robustness of the simulation model, a grid system was constructed with hexahedron-type grids around the valve plate. Furthermore, we employed an empirical formula to describe the relationship between the oil density and pressure. The CFD (computational fluid dynamics) results compared well with the experimental data.

Implementation of an Auto-Steering System for Recreational Marine Crafts Using Android Platform and NMEA Network

  • Beirami, Mohammadamin;Lee, Hee Yong;Yu, Yung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.577-585
    • /
    • 2015
  • This paper deals with development of an autopilot system for leisure yacht based on NMEA 2000 network and android platform. The developed system can operate both for manual steering and automatic navigation mode. In automatic steering mode, after manipulation of commands which are NMEA 0183 sentences by android platform, the developed system translates and sends the packets through NMEA 2000 network. Then the controller which is connected to NMEA 2000 network receives the commands and controls the boat's rudder system automatically. The automatic steering mode is achieved by cooperation of two controllers; one for controlling the rudder system, and the other for controlling the vessel's heading. To control the vessel's rudder and heading angle two PID controllers are developed with an adjustable dead-band gain. Also, in order to eliminate the steady-state error occurred by applying dead-band, an integral controller which specifically supervises the system's behavior inside the dead-band area is developed. In this paper, at the first stage, simulations are accomplished using computer in order to examine the feasibility of the proposed based on simulation results. In the next step, the system on a real hydraulic steering model is implemented and at the end the performance examination by implementing it on a real boat and doing test navigation is executed.

Examination on Autonomous Recovery Algorithm of Piping System (배관 체계 자율 복구 알고리즘 비교, 분석 및 고찰)

  • Yang, Dae Won;Lee, Jeung-hoon;Shin, Yun-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • Piping systems comprising pumps and valves are essential in the power plant, oil, and defense industry. Their purpose includes a stable supply of the working fluid or ensuring the target system's safe operation. However, piping system accidents due to leakage of toxic substances, explosions, and natural disasters are prevalent In addition, with the limited maintenance personnel, it becomes difficult to detect, isolate, and reconfigure the damage of the piping system and recover the unaffected area. An autonomous recovery piping system can play a vital role under such circumstances. The autonomous recovery algorithms for the piping system can be divided into low-pressure control algorithms, hydraulic resistance control algorithms, and flow inventory control algorithms. All three methods include autonomous opening/closing logic to isolate damaged areas and recovery the unaffected area of piping systems. However, because each algorithm has its strength and weakness, appropriate application considering the overall design, vital components, and operating conditions is crucial. In this regard, preliminary research on algorithm's working principle, its design procedures, and expected damage scenarios should be accomplished. This study examines the characteristics of algorithms, the design procedure, and working logic. Advantages and disadvantages are also analyzed through simulation results for a simplified piping system.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Dynamic Characteristics of a Soft Recoil System (연식주퇴 시스템의 동적 특성 해석)

  • Bae, Jae-Sung;Shin, Chul-Bong;Hwang, Jai-Hyuk;Kang, Kuk-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.13-19
    • /
    • 2008
  • In order to reduce the level of recoil force, new recoil technology must be employed. The present study discusses a soft-recoil system that can reduce dramatically the recoil force. The firing sequence of the soft recoil system is radically different from that of a conventional system. The gun is latched and preloaded in its out-of-battery position prior to firing. When unlatched, the gun is accelerated and forward momentum is imparted to the recoiling parts. This momentum is opposed by the ballistic force imparted by firing and the recoil force and stoke will be reduced. In the present study, the soft-recoil system with hydraulic dampers is simulated and its characteristics are investigated theoretically. The results of the simulation show that the soft-recoil system could dramatically reduce the recoil force and the recoil stroke compared to the conventional recoil systems. However, the soft-recoil system was not able to perform well when the firing fault modes like prefire, hang-fire, and misfire happen. Hence, we need to employ a control algorithm to prevent the damage of the recoil system due to these fault mode.

Design Concept of Hybrid SIT (복합안전주입탱크(Hybrid SIT) 설계개념)

  • Kwon, Tae-Soon;Euh, Dong-Jin;Kim, Ki-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.104-108
    • /
    • 2014
  • The recent Fukushima nuclear power plant accidents shows that the core make up at high RCS pressure condition is very important to prevent core melting. The core make up flow at high pressure condition should be driven by gravity force or passive forces because the AC-powered safety features are not available during a Station Black Out (SBO) accident. The reactor Coolant System (RCS) mass inventory is continuously decreased by releasing steam through the pressurizer safety valves after reactor trip during a SBO accident. The core will be melted down within 2~3 hours without core make up action by active or passive mode. In the new design concept of a Hybrid Safety Injection Tank (Hybrid SIT) both for low and high RCS pressure conditions, the low pressure nitrogen gas serves as a charging pressure for a LBLOCA injection mode, while the PZR high pressure steam provides an equalizing pressure for a high pressure injection mode such as a SBO accident. After the pressure equalizing process by battery driven initiation valve at a high pressure SBO condition, the Hybrid SIT injection water will be passively injected into the reactor downcomer by gravity head. The SBO simulation by MARS code show that the core makeup injection flow through the Hybrid SIT continued up to the SIT empty condition, and the core heatup is delayed as much.

Internal Flow and Performance Characteristics According to the Runner Gap of a Francis Turbine Model (프란시스 수차 모델의 러너 간극에 따른 내부유동 및 성능 특성)

  • KIM, SEUNG-JUN;CHOI, YOUNG-SEOK;CHO, YONG;CHOI, JONG-WOONG;HYUN, JUNG-JAE;JOO, WON-GU;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.328-336
    • /
    • 2020
  • In the Francis turbine, the leakage flow through the runner gaps which are between the runner and the stator structure influences the internal flow and hydraulic performance. Thus, the investigation for the flow characteristics induced by the runner gaps is important. However, the runner gaps are often disregarded by considering the time and cost of the numerical analysis. Therefore, in this study, the flow characteristics according to runner gaps of the Francis turbine model were investigated including the leakage flow of the runner cone. The three-dimensional unsteady Reynolds-averaged Navier-Stokes analyses were conducted using a scale-adaptive simulation shear stress transport as a turbulence model for observing the influence of the leakage flow on the internal flow and hydraulic performance. The efficiencies were decreased slightly with runner gaps; and the complicated flows were captured in the gaps.