• 제목/요약/키워드: simulated annealing algorithm

검색결과 411건 처리시간 0.027초

유리재단 문제에 대한 분산 합성 알고리즘 (A Distributed Hybrid Algorithm for Glass Cutting)

  • 홍철의
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권2호
    • /
    • pp.343-349
    • /
    • 2018
  • 본 논문에서는 유리재단 문제에 평균장 어닐링과 시뮬레이션된 어닐링 형태의 유전자 알고리즘을 결합한 합성 알고리즘을 분산 처리하여 적용한다. 유리재단 문제는 2차원 2진 패킹 문제로 주어진 원판에 요구되는 사각형 모양의 패턴들을 버려지는 부분이 최소가 되게 배치하는 조합 최적화 문제이다. 제안된 합성 알고리즘은 유전자 알고리즘의 다양한 연산자에 시뮬레이션된 어닐링의 온도개념을 추가하여 평균장 알고리즘에 의한 빠른 평형상태 도달을 유지하게 하였다. MPI를 이용한 분산 합성 알고리즘을 유리재단 문제에 적용하여 실험한 결과 기존의 평균장 어닐링 또는 유전자 알고리즘을 단독으로 사용하였을 때보다 최적의 배치 상태를 나타내었으며 최적해 접근 특성을 유지하면서 문제의 크기에 대하여 선형적인 수행시간 단축을 보여 주었다.

Via 이동을 통한 결함 민감 지역 감소를 위한 시뮬레이티드 어닐링 (Simulated Annealing for Reduction of Defect Sensitive Area Through Via Moving)

  • 이승환;손소영
    • 대한산업공학회지
    • /
    • 제28권1호
    • /
    • pp.57-62
    • /
    • 2002
  • The semiconductor industry has continuously been looking for the ways to improve yield and to reduce manufacturing cost. The layout modification approach, one of yield enhancement techniques, is applicable to all design styles, but it does not require any additional resources in terms of silicon area. The layout modification method for yield enhancement consists of making local variations in the layout of some layers in such a way that the critical area, and consequently the sensitivity of the layer to point defects, is reduced. Chen and Koren (1995) proposed a greedy algorithm that removes defect sensitive area using via moving, but it is easy to fall into a local minimum. In this paper, we present a via moving algorithm using simulated annealing and enhance yield by diminishing defect sensitive area. As a result, we could decrease the defect sensitive area effectively compared to the greedy algorithm presented by Chen and Koren. We expect that the proposed algorithm can make significant contributions on company profit through yield enhancement.

Optimal sensor placement for mode shapes using improved simulated annealing

  • Tong, K.H.;Bakhary, Norhisham;Kueh, A.B.H.;Yassin, A.Y. Mohd
    • Smart Structures and Systems
    • /
    • 제13권3호
    • /
    • pp.389-406
    • /
    • 2014
  • Optimal sensor placement techniques play a significant role in enhancing the quality of modal data during the vibration based health monitoring of civil structures, where many degrees of freedom are available despite a limited number of sensors. The literature has shown a shift in the trends for solving such problems, from expansion or elimination approach to the employment of heuristic algorithms. Although these heuristic algorithms are capable of providing a global optimal solution, their greatest drawback is the requirement of high computational effort. Because a highly efficient optimisation method is crucial for better accuracy and wider use, this paper presents an improved simulated annealing (SA) algorithm to solve the sensor placement problem. The algorithm is developed based on the sensor locations' coordinate system to allow for the searching in additional dimensions and to increase SA's random search performance while minimising the computation efforts. The proposed method is tested on a numerical slab model that consists of two hundred sensor location candidates using three types of objective functions; the determinant of the Fisher information matrix (FIM), modal assurance criterion (MAC), and mean square error (MSE) of mode shapes. Detailed study on the effects of the sensor numbers and cooling factors on the performance of the algorithm are also investigated. The results indicate that the proposed method outperforms conventional SA and Genetic Algorithm (GA) in the search for optimal sensor placement.

Medoid Determination in Deterministic Annealing-based Pairwise Clustering

  • Lee, Kyung-Mi;Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권3호
    • /
    • pp.178-183
    • /
    • 2011
  • The deterministic annealing-based clustering algorithm is an EM-based algorithm which behaves like simulated annealing method, yet less sensitive to the initialization of parameters. Pairwise clustering is a kind of clustering technique to perform clustering with inter-entity distance information but not enforcing to have detailed attribute information. The pairwise deterministic annealing-based clustering algorithm repeatedly alternates the steps of estimation of mean-fields and the update of membership degrees of data objects to clusters until termination condition holds. Lacking of attribute value information, pairwise clustering algorithms do not explicitly determine the centroids or medoids of clusters in the course of clustering process or at the end of the process. This paper proposes a method to identify the medoids as the centers of formed clusters for the pairwise deterministic annealing-based clustering algorithm. Experimental results show that the proposed method locate meaningful medoids.

뉴럴 네트워크와 시뮬레이티드 어닐링법을 하이브리드 탐색 형식으로 이용한 어패럴 패턴 자동배치 프로그램에 관한 연구 (Study on Hybrid Search Method Using Neural Network and Simulated Annealing Algorithm for Apparel Pattern Layout Design)

  • 장승호
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.63-68
    • /
    • 2015
  • Pattern layout design is very important to the automation of apparel industry. Until now, the genetic algorithm and Tabu search method have been applied to layout design automation. With the genetic algorithm and Tabu search method, the obtained values are not always consistent depending on the initial conditions, number of iterations, and scheduling. In addition, the selection of various parameters for these methods is not easy. This paper presents a hybrid search method that uses a neural network and simulated annealing to solve these problems. The layout of pattern elements was optimized to verify the potential application of the suggested method to apparel pattern layout design.

최적화기법에 의한 베어링 동특성 계수의 규명 (Identification of Bearing Dynamic Coefficients Using Optimization Techniques)

  • 김용한;양보석;안영공;김영찬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.520-525
    • /
    • 2003
  • The determination of unknown parameters in rotating machinery is a difficult task and optimization techniques represent an alternative technique for parameter identification. The Simulated Annealing(SA) and Genetic Algorithm(GA) are powerful global optimization algorithm. This paper proposes new hybrid algorithm which combined GA with SA and local search algorithm for the purpose of parameter identification. Numerical examples are also presented to verify the efficiency of proposed algorithm. And, this paper presents the general methodology based on hybrid algorithm to identify unknown bearing parameters of flexible rotors using measured unbalance responses. Numerical examples are used to ilustrate the methodology used, which is then validated experimentally.

  • PDF

데이터 클러스터링을 위한 혼합 시뮬레이티드 어닐링 (Hybrid Simulated Annealing for Data Clustering)

  • 김성수;백준영;강범수
    • 산업경영시스템학회지
    • /
    • 제40권2호
    • /
    • pp.92-98
    • /
    • 2017
  • Data clustering determines a group of patterns using similarity measure in a dataset and is one of the most important and difficult technique in data mining. Clustering can be formally considered as a particular kind of NP-hard grouping problem. K-means algorithm which is popular and efficient, is sensitive for initialization and has the possibility to be stuck in local optimum because of hill climbing clustering method. This method is also not computationally feasible in practice, especially for large datasets and large number of clusters. Therefore, we need a robust and efficient clustering algorithm to find the global optimum (not local optimum) especially when much data is collected from many IoT (Internet of Things) devices in these days. The objective of this paper is to propose new Hybrid Simulated Annealing (HSA) which is combined simulated annealing with K-means for non-hierarchical clustering of big data. Simulated annealing (SA) is useful for diversified search in large search space and K-means is useful for converged search in predetermined search space. Our proposed method can balance the intensification and diversification to find the global optimal solution in big data clustering. The performance of HSA is validated using Iris, Wine, Glass, and Vowel UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KSAK (K-means+SA+K-means) and SAK (SA+K-means) are better than KSA(K-means+SA), SA, and K-means in our simulations. Our method has significantly improved accuracy and efficiency to find the global optimal data clustering solution for complex, real time, and costly data mining process.

이동 통신 시스템에서 기지국 위치의 최적화 (Base Station Location Optimization in Mobile Communication System)

  • 변건식;이성신;장은영;오정근
    • 한국전자파학회논문지
    • /
    • 제14권5호
    • /
    • pp.499-505
    • /
    • 2003
  • 이동 무선 통신 시스템을 설계할 때 기지국의 위치는 매우 중요한 파라미터 중 하나이다. 기지국 위치를 설계할 때 여러 가지 복잡한 변수들을 잘 조합하여 코스트가 최소가 되도록 설계해야 한다. 이러한 문제를 해결하는데 필요한 알고리즘이 조합 최적화 알고리즘이며, 지금까지 조합 최적화 기술로 Random Walk, Simulated Annealing, Tabu Search, Genetic Algorithm과 같은 전역 최적화 기술이 사용되어 왔다. 본 논문은 이동 통신시스템의 기지국 위치 최적화에 위의 4가지 알고리즘들을 적용하여 각 알고리즘의 결과를 비교 분석하며 알고리즘에 의한 최적화 과정을 보여준다.

지능 최적 알고리즘을 이용한 전기임피던스 단층촬영법의 영상복원 (Intelligent Optimization Algorithm Approach to Image Reconstruction in Electrical Impedance Tomography)

  • 김호찬;부창친;이윤준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.513-516
    • /
    • 2002
  • In electrical impedance tomography(EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents two intelligent optimization algorithm techniques such as genetic algorithm and simulated annealing for the solution of the static EIT inverse problem. We summarize the simulation results for the three algorithm forms: modified Newton-Raphson, genetic algorithm, and simulated annealing.

  • PDF

혼합모델 투입순서 결정을 위한 시뮬레이티드 어닐링 최적 설계 (An Optimal Design of Simulated Annealing Approach to Mixed-Model Sequencing)

  • 김호균;조형수
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2002년도 춘계공동학술대회
    • /
    • pp.936-943
    • /
    • 2002
  • The Simulated Annealing (SA) algorithm has been successfully applied to various difficult combinatorial optimization problems. Since the performance of a SA algorithm, generally depends on values of the parameters, it is important to select the most appropriate parameter values. In this paper the SA algorithm is optimally designed for performance acceleration, by using the Taguchi method. Several test problems are solved via the SA algorithm optimally designed, and the solutions obtained are compared to solution results McMullen & Frazier(2000). The performance of the SA algorithm is evaluated in terms of solution quality and computation times. Computational results show that the proposed SA algorithm is effective and efficient in finding near-optimal solutions.

  • PDF