• Title/Summary/Keyword: simplified solution

Search Result 353, Processing Time 0.026 seconds

Non-spillover control design of tall buildings in modal space

  • Fang, J.Q.;Li, Q.S.;Liu, D.K.
    • Wind and Structures
    • /
    • v.2 no.3
    • /
    • pp.189-200
    • /
    • 1999
  • In this paper, a new algorithm for active control design of structures is proposed and investigated. The algorithm preserves the decoupling property of the modal vibration equation and eliminates the spillover problem, which is the main shortcoming in the independent modal space control(IMSC) algorithm. With linear quadratic regulator(LQR) control law, the analytical solution of algebraic Riccati equation and the optimal actuator control force are obtained, and the control design procedure is significantly simplified. A numerical example for the control design of a tall building subjected to wind loads demonstrates the effectiveness of the proposed algorithm in reducing the acceleration and displacement responses of tall buildings under wind actions.

The Study on Axisymmetric Deformation of Thin Orthotropic Composite Pressure Vessel (직교이방성 복합재료로 만든 두께가 얇은 압력용기의 변형에 관한 연구)

  • 김형원;최용규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.36-43
    • /
    • 2003
  • The analytic solution of radial displacements of thin cylindrical pressure vessel with carbon fiber T700/Epoxy orthotropic composites was obtained using equilibrium equations of the orthogonal curvilinear coordinate system. The governing equations with the simplified strain versus displacement relation of 3-dimensional curvilinear coordinate system were derived from the variational principle and the virtual work principle. Some theoretical analyses were presented and compared with the results of hydraulic tests for the pressure vessels with some various thicknesses. The results of the theoretical analysis and the hydraulic test were reasonably matched.

Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay

  • Silvestri, Vincenzo;Abou-Samra, Ghassan
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-37
    • /
    • 2012
  • This paper presents the results of analytical and numerical analyses of the effects of performing a pressuremeter test or driving a pile in clay. The geometry of the problem has been simplified by the assumptions of plane strain and axial symmetry. Pressuremeter testing or installation of driven piles has been modelled as an undrained expansion of a cylindrical cavity. Stresses, pore water pressures, and deformations are found by assuming that the clay behaves like normally consolidated modified Cam clay. Closed-form solutions are obtained which allow the determination of the principal effective stresses and the strains around the cavity. The analysis which indicates that the intermediate principal stress at critical state is not equal to the mean of the other two principal stresses, except when the clay is initially isotropically consolidated, also permits finding the limit expansion and excess pore water pressures by means of the Almansi finite strain approach. Results are compared with published data which were determined using finite element and finite difference methods.

A Modified Calculation of Electromagnetic Shielding Effectiveness Considering Some electrical Parameters (발산가응계통에서의 뉴톤-랍슨 전력게통합)

  • Sang-Jin Lee;Myung-Hwan Oh
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.12
    • /
    • pp.173-179
    • /
    • 1982
  • This paper presents a modified quasi-static approximate solution derived from the Maxwell's equations of integral form for the calculation of magnetic shielding effectiveness in a non-uniform enclosure such as metal-clad high-voltage test laboratory. It also describes the simplified relationship between the electrical parameters applicable to the engineering calculations of electromagnetic absorption loss which comprise the resultant effects due to the welding seams and short-circuited slots as well as the shielding material properties. A numerical example shows the fairly good agreements with experimental results measured on the absorption loss vs. incident wave frequency without any unreasonable rapid increase.

  • PDF

Cooperative MAC Protocol Using Active Relays for Multi-Rate WLANs

  • Oh, Chang-Yeong;Lee, Tae-Jin
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.463-471
    • /
    • 2011
  • Cooperative communications using relays in wireless networks have similar effects of multiple-input and multiple-output without the need of multiple antennas at each node. To implement cooperation into a system, efficient protocols are desired. In IEEE 802.11 families such as a/b/g, mobile stations can automatically adjust transmission rates according to channel conditions. However throughput performance degradation is observed by low-rate stations in multi-rate circumstances resulting in so-called performance anomaly. In this paper, we propose active relay-based cooperative medium access control (AR-CMAC) protocol, in which active relays desiring to transmit their own data for cooperation participate in relaying, and it is designed to increase throughput as a solution to performance anomaly. We have analyzed the performance of the simplified AR-CMAC using an embedded Markov chain model to demonstrate the gain of AR-CMAC and to verify it with our simulations. Simulations in an infrastructure network with an IEEE 802.11b/g access point show noticeable improvement than the legacy schemes.

Deflection and Stress Distributions of a Circular Plate under the Constant Pressure with respect to the Element types (균등 압력이 부과된 원형판의 변형에 대한 해석요소의 정확성 비교)

  • Lee, Hyoungwook
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • The analysis of circular plates under the constant pressure are simplified as the loading conditions of the circular manhole. The theoretical solution of circular plates with respect to the constant pressures are derived by using the governing equation of plate deflection. The deflection and the radial stress distributions were calculated by the theory. Finite element solutions were conducted with respect to the element types of the continuum elements. The most accurate element was selected by comparisons of the theoretical solutions and simulated solutions. The C3D8I element type in brick-type continuum elements gave in a good accordance with the theoretical solutions.

Seismic Behavior of Bridges with Sacrificial Energy-dissipating Devices (회생개념의 에너지소산장치의 적용에 따른 교량의 내진성능평가)

  • 김상효;이상우;김영훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.393-400
    • /
    • 2003
  • Various types of dampers are widely adopted to reduce the seismic damages in bridges. However, dampers may be the improper solution especially in moderate seismic regions because dampers are costly for installation and require constant maintenance during life cycle. In this study, energy-dissipating sacrificial device is proposed, which sacrifices easily substitutable bridge members and dissipates the excessive energy during seismic excitations. In turns, the inelastic behavior of sacrificial members reduces the input energy of the major members, such as piers in bridges, and may prevent the major members from serious malfunction. A simplified mechanical model is developed to represent the behavior of sacrificial devices installed in a bridge. The hysteresis energy of piers is analyzed to certify performance of device under seismic loads applied to this mechanical model. The results from this study show that the proposed sacrificial energy-dissipating device can decrease excessive hysteresis energy and reduce the damage of piers under seismic excitation. Therefore, economical enhancement of the seismic performance of bridges may be possible by employing the proposed sacrificial energy-dissipating devices.

  • PDF

Three-dimensional Detonation Cell Structures in a Circular Tube

  • Cho, D.R.;Won, S.H.;Shin, Edward J.R.;Choi, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.597-601
    • /
    • 2008
  • Three-dimensional structures of detonation wave propagating in circular tube were investigated. Inviscid fluid dynamics equations coupled with a conservation equation of reaction progress variable were analyzed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Variable-$\gamma$ formulation was used to account for the variable properties between unburned and burned states and the chemical reaction was modeled by using a simplified one-step irreversible kinetics model. The computational code was parallelized based on domain decomposition technique using MPI-II message passing library. The computations were carried out using a home made Windows based PC cluster having 160 AMD AthloxXP and Athlon64 processor. The computational domain consisted of through a roundshaped tube with wall conditions. As an initial condition, analytical ZND solution was distributed over the computational domain with disturbances. The disturbances has circumferential large gradient. The unsteady computational results in three-dimension show the detailed mechanisms of multi-cell mode of detonation wave instabilities resulting diamond shape in smoked-foil record.

  • PDF

Combined hardening and localized failure with softening plasticity in dynamics

  • Do, Xuan Nam;Ibrahimbegovic, Adnan;Brancherie, Delphine
    • Coupled systems mechanics
    • /
    • v.4 no.2
    • /
    • pp.115-136
    • /
    • 2015
  • We present for one-dimensional model for elastoplastic bar with combined hardening in FPZ - fracture process zone and softening with embedded strong discontinuities. The simplified version of the model without FPZ is directly compared and validated against analytical solution of Bazant and Belytschko (1985). It is shown that deformation localizes in an area which is governed by the chosen element size and therefore causes mesh sensitivity and that the length of the strain-softening region tends to localize into a point, which also agrees with results obtained by stability analysis for static case. Strain increases in the softening domain with a simultaneous decrease of stress. The problem unloads elastically outside the strain-softening region. The more general case with FPZ leads to more interesting results that also account for induced strain heterogeneities.

Combined Traffic Signal Control and Traffic Assignment : Algorithms, Implementation and Numerical Results

  • Lee, Chung-Won
    • Proceedings of the KOR-KST Conference
    • /
    • 2000.02a
    • /
    • pp.89-115
    • /
    • 2000
  • Traffic signal setting policies and traffic assignment procedures are mutually dependent. The combined signal control and traffic assignment problem deals with this interaction. With the total travel time minimization objective, gradient based local search methods are implemented. Deterministic user equilibrium is the selected user route choice rule, Webster's delay curve is the link performance function, and green time per cycle ratios are decision variables. Three implemented solution codes resulting in six variations include intersections operating under multiphase operation with overlapping traffic movements. For reference, the iterative approach is also coded and all codes are tested in four example networks at five demand levels. The results show the numerical gradient estimation procedure performs best although the simplified local searches show reducing the large network computational burden. Demand level as well as network size affects the relative performance of the local and iterative approaches. As demand level becomes higher, (1) in the small network, the local search tends to outperform the iterative search and (2) in the large network, vice versa.

  • PDF