• 제목/요약/키워드: simple beam model

검색결과 293건 처리시간 0.024초

Simplified analytical model for flexural response of external R.C. frames with smooth rebars

  • Campione, Giuseppe;Cannella, Francesco;Cavaleri, Liborio;Monaco, Alessia
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.531-542
    • /
    • 2018
  • In this paper an analytical model in a closed form able to reproduce the monotonic flexural response of external RC beam-column joints with smooth rebars is presented. The column is subjected to a constant vertical load and the beam to a monotonically increasing lateral force applied at the tip. The model is based on the flexural behavior of the beam and the column determined adopting a concentrated plasticity hinge model including slippage of the main reinforcing bars of the beam. A simplified bilinear moment-axial force domain is assumed to derive the ultimate moment associated with the design axial force. For the joint, a simple truss model is adopted to predict shear strength and panel distortion. Experimental data recently given in the literature referring to the load-deflection response of external RC joints with smooth rebars are utilized to validate the model, showing good agreement. Finally, the proposed model can be considered a useful instrument for preliminary static verification of existing external RC beam-column joints with smooth rebars for both strength and ductility verification.

Shear strength model for reinforced concrete beam-column joints based on hybrid approach

  • Parate, Kanak N.;Kumar, Ratnesh
    • Computers and Concrete
    • /
    • 제23권6호
    • /
    • pp.377-398
    • /
    • 2019
  • Behavior of RC beam-column joint is very complex as the composite material behaves differently in elastic and inelastic range. The approaches generally used for predicting joint shear strength are either based on theoretical, strut-and-tie or empirical methods. These approaches are incapable of predicting the accurate response of the joint for entire range of loading. In the present study a new generalized RC beam-column joint shear strength model based on hybrid approach i.e. combined strut-and-tie and empirical approach has been proposed. The contribution of governing parameters affecting the joint shear strength under compression has been derived from compressive strut approach whereas; the governing parameters active under tension has been extracted from empirical approach. The proposed model is applicable for various conditions such as, joints reinforced either with or without shear reinforcement, joints with wide beam or wide column, joints with transverse beams and slab, joints reinforced with X-bars, different anchorage of beam bar, and column subjected to various axial loading conditions. The joint shear strength prediction of the proposed model has been compared with 435 experimental results and with eleven popular models from literature. In comparison to other eleven models the prediction of the proposed model is found closest to the experimental results. Moreover, from statistical analysis of the results, the proposed model has the least coefficient of variation. The proposed model is simple in application and can be effectively used by designers.

주기적인 충격력을 받는 탄소성 보의 케이오틱거동 연구 (A Study of Chaotic Responses of an Elastic-Plastic Beam Model to Periodic Impulsive Force)

  • 이재영
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1158-1167
    • /
    • 1995
  • In this study, the dynamic instabilities of a beam, subjected to periodic short impulsive loading, are investigated using simple 2-DoF beam model. The behaviors of beam model whose axial motions are constrained are studied for the case of elastic and elastic-plastic behavior. In the case of elastic behavior, the chaotic responses due to the periodic pulse are identified, and the characteristics of the behavior are analysed by investigating the fractal attractors in the Poincare map. The short-term and long-term responses of the beam are unpredictable because of the extreme sensitivities to parameters, a hallmark of chaotic response. In the case of elastic-plastic behavior, the responses are governed by the plastic strains which occur continuously and irregularly as time increases. Thus the characteristics of the response behavior change continuously due to the plastic strain increments, and are unpredictable as well as the elastic case.

대전지역 직달 및 산란과 전일사 상관계수 (Beam and Diffuse to Global Solar Irradiation Correlation Coefficients for Daejeon)

  • 이관호;송두삼
    • 한국태양에너지학회 논문집
    • /
    • 제39권4호
    • /
    • pp.11-24
    • /
    • 2019
  • The total solar irradiation on horizontal surfaces is separated into the beam and diffuses components. Although horizontal global irradiance is a commonly measured parameter for many sites, horizontal diffuse irradiance is not so readily obtainable. For such sites that measure global irradiation alone, a simple but reasonably accurate method is required to estimate diffuse irradiance from its global counterpart. This study investigates the applicability of correlation coefficients models correlating hourly diffuse and beam fraction and hourly clearness index in Daejeon. The three diffuse to global correlation coefficients models (Orgill and Holland model, CIBSE Guide J model, and Erbs et al. model) are selected and the three modified beam to global correlation coefficients models are generated. MBE, RMSE, r-squared of Daejeon and Daejeon boundary site-fitted models are compared with the case of original coefficients. The comparison result shows that the beam and diffuse to global solar irradiation correlation coefficients models with boundary site-fitted coefficients are best suitable for Daejeon. Further researches will be conducted to find the boundary site-fitting method using measured data of other cities and correlation coefficients models using solar altitude, cloud cover, and sunshine duration.

Viscoelastic behavior on composite beam using nonlinear creep model

  • Jung, Sung-Yeop;Kim, Nam-Il;Shin, Dong Ku
    • Steel and Composite Structures
    • /
    • 제7권5호
    • /
    • pp.355-376
    • /
    • 2007
  • The purpose of this study is to predict and investigate the time-dependent creep behavior of composite materials. For this, firstly the evaluation method for the modulus of elasticity of whole fiber and matrix is presented from the limited information on fiber volume fraction using the singular value decomposition method. Then, the effects of fiber volume fraction on modulus of elasticity of GFRP are verified. Also, as a creep model, the nonlinear curve fitting method based on the Marquardt algorithm is proposed. Using the existing Findley's power creep model and the proposed creep model, the effect of fiber volume fraction on the nonlinear creep behavior of composite materials is verified. Then, for the time-dependent analysis of a composite material subjected to uniaxial tension and simple shear loadings, a user-provided subroutine UMAT is developed to run within ABAQUS. Finally, the creep behavior of center loaded beam structure is investigated using the Hermitian beam elements with shear deformation effect and with time-dependent elastic and shear moduli.

스트럿-타이 모델 방법에 의한 콘크리트 구조물의 해석 및 설계 (Analysis and Design of Concrete Structures with Strut-Tie Model Approach)

  • 윤영묵;박문호;박승진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.251-256
    • /
    • 1995
  • This paper presents an evaluation of the strength and behavior of a tested simply supported rectangular reinforced eoncrete beam and a design example of a shear wall using two-dimensional strut-tie model with finite element nonlinear analysis. Strut-tie models reflecting the actual support and loading conditions are developed for the beam and shear wall. The strut-tie model not only provides simple solutions for large number of design situations dealing with the entire range of concrete structures which appear to be rather complicated but also predicts the behavior and strength of concrete members.

  • PDF

Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • 제10권2호
    • /
    • pp.161-184
    • /
    • 2021
  • Strengthening of reinforced concrete beams with externally bonded fiber reinforced polymer plates/sheets technique has become widespread in the last two decades. Although a great deal of research has been conducted on simply supported RC beams, a few studies have been carried out on continuous beams strengthened with FRP composites. This paper presents a simple uniaxial nonlinear analytical model that is able to accurately estimate the load carrying capacity and the behaviour of damaged RC continuous beams flexural strengthened with externally bonded prestressed composite plates on both of the upper and lower fibers, taking into account the thermal load. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the damaged concrete beam, the FRP plate and the adhesive layer. The flexural analysis results and analytical predictions for the prestressed composite strengthened damaged RC continuous beams were compared and showed very good agreement in terms of the debonding load, yield load, and ultimate load. The use of composite materials increased the ultimate load capacity compared with the non strengthened beams. The major objective of the current model is to help engineers' model FRP strengthened RC continuous beams in a simple manner. Finally, this research is helpful for the understanding on mechanical behaviour of the interface and design of the FRP-damaged RC hybrid structures.

DYNAMIC CHARACTERISTICS OF SCALED-DOWN W-BEAMS UNDER IMPACT

  • Hui, T.-Y.-J.;Ruan, H.-H.;Yu, T.-X.
    • International Journal of Automotive Technology
    • /
    • 제4권1호
    • /
    • pp.31-40
    • /
    • 2003
  • W-beam guardrail system has been the most popular roadside safety device around the world. Through large plastic deformation and corresponding energy dissipation, a W-beam guardrail system contains and re-directs out-of-control vehicles so as to reduce the impact damage on the vehicle occupants and the vehicles themselves. In this paper, our recent experiments on 1 : 3.75 downscaled W-beam and the beam-post system are reported. The static and impact test results on the load characteristics, the global response and the local cross-sectional distortion are reveled. The effects of three different end-boundary conditions for the beam-only testing are examined. It is found that the load characteristics are much dependent on the combined contribution of the local cross-sectional distortion and the end-supporting conditions. The energy Partitioning between the beam and the supporting Posts in the beam-Post-system testing were also examined. The results showed that the energy dissipation partitioning changed with the input impact energy. Finally, a simple mass-spring model is developed to assess the dynamic response of a W-beam guardrail system in response to an impact loading. The model's prediction agrees well with the experimental results.

Large deflection analysis of edge cracked simple supported beams

  • Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.433-451
    • /
    • 2015
  • This paper focuses on large deflection static behavior of edge cracked simple supported beams subjected to a non-follower transversal point load at the midpoint of the beam by using the total Lagrangian Timoshenko beam element approximation. The cross section of the beam is circular. The cracked beam is modeled as an assembly of two sub-beams connected through a massless elastic rotational spring. It is known that large deflection problems are geometrically nonlinear problems. The considered highly nonlinear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of Aluminum. In the study, the effects of the location of crack and the depth of the crack on the non-linear static response of the beam are investigated in detail. The relationships between deflections, end rotational angles, end constraint forces, deflection configuration, Cauchy stresses of the edge-cracked beams and load rising are illustrated in detail in nonlinear case. Also, the difference between the geometrically linear and nonlinear analysis of edge-cracked beam is investigated in detail.

Optimum shape and length of laterally loaded piles

  • Fenu, Luigi;Briseghella, Bruno;Marano, Giuseppe Carlo
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.121-130
    • /
    • 2018
  • This study deals with optimum geometry design of laterally loaded piles in a Winkler's medium through the Fully Stressed Design (FSD) method. A numerical algorithm distributing the mass by means of the FSD method and updating the moment by finite elements is implemented. The FSD method is implemented here using a simple procedure to optimise the beam length using an approach based on the calculus of variations. For this aim two conditions are imposed, one transversality condition at the bottom end, and a one sided constraint for moment and mass distribution in the lower part of the beam. With this approach we derive a simple condition to optimise the beam length. Some examples referred to different fields are reported. In particular, the case of laterally loaded piles in Geotechnics is faced.