• 제목/요약/키워드: silver nanowires

검색결과 62건 처리시간 0.027초

광경화 점착 테이프를 이용한 은 나노와이어 기반 투명전극 패터닝 공법 (A Novel Patterning Method for Silver Nanowire-based Transparent Electrode using UV-Curable Adhesive Tape)

  • 주윤희;신유빈;김종웅
    • 마이크로전자및패키징학회지
    • /
    • 제27권3호
    • /
    • pp.73-76
    • /
    • 2020
  • 은 나노와이어는 금속 특유의 고전도 특성, 낮은 Percolation threshold 및 고투과 특성을 나타내어 차세대 투명전극 물질로 각광받고 있다. 이를 플렉서블 및 웨어러블 디바이스, 전자피부 디바이스 등과 같은 다양한 분야에 활용하기 위해서는 은 나노와이어 전극을 필요한 형태로 패터닝 하기 위한 기술이 필수적으로 요구된다. 일반적으로, 은 나노와이어를 패터닝하기 위한 공법으로는 포토리소그래피 및 에칭, 프린팅, 레이저 Ablation 등을 들 수 있으나, 이러한 패터닝 기술들은 공정 절차가 복잡하거나 높은 공정 비용 등의 단점이 있다. 이에 본 연구에서는 UV-curable 점착제 기반의 low-cost 은 나노와이어 패터닝 공법을 개발하고자 하였다. 은 나노와이어 네트워크가 형성된 폴리우레탄 필름에 UV 경화형 테이프를 부착하고, UV를 선택적으로 조사한 뒤, 다시 UV 경화형 테이프를 벗겨내는 3단계의 간단한 공정만으로 은 나노와이어 패턴을 성공적으로 형성할 수 있었으며, 간단한 구현 원리 및 분석 결과를 본 논문에서 보고하고자 한다.

Shear-coating을 사용한 은 나노와이어 투명 전극 제조 및 특성 분석 (Preparation and characterization of silver nanowire transparent electrodes using shear-coating)

  • 조경수;홍기하;박준식;정중희
    • 한국표면공학회지
    • /
    • 제53권4호
    • /
    • pp.182-189
    • /
    • 2020
  • Indium tin oxide (ITO) used a transparent electrode of a photoelectric device has a low sheet resistance and a high transmittance. However, ITO is disadvantageous in that the process cost is expensive, and the process time is long. Silver nanowires (AgNWs) transparent electrodes are based on a low cost solution process. In addition, it has attracted attention as a next-generation transparent electrode material that replaces ITO because it has similar electrical and optical characteristic to ITO, it is noted as a. AgNW thin films are mainly produced by spin-coating. However, the spin-coating process has a disadvantage of high material loss. In this study, the material loss was reduced by using about 2~10 ㎕ of AgNW solution on a (25 × 25) ㎟ substrate using the shear-coating method. It was also possible to align AgNWs in the drag direction by dragging the meniscus of the solution. The electro-optical properties of the AgNW thin film were adjusted by changing the experimental parameters that the amount of AgNWs suspension, the gap between the substrate and the blade, and the coating speed. As a result, AgNW thin films with a transmittance of 90.7 % at a wavelength of 550 nm and a sheet resistance of 15 Ω/□ was deposited and exhibited similar properties to similar AgNW transparent electrodes studied by other researchers.

산화아연(Zinc oxide) 나노입자와 은나노 와이어(Silver nanowire)를 함유한 Poly(vinylidene fluoride) 복합나노섬유 제조 및 동작 센서로의 적용 가능성 탐색 (Fabrication of Poly(Vinylidene Fluoride) Nanocomposite Fibers Containing Zinc Oxide Nanoparticles and Silver Nanowires and their Application in Textile Sensors for Motion Detection and Monitoring)

  • 양혁주;이승신
    • 한국의류학회지
    • /
    • 제47권3호
    • /
    • pp.577-592
    • /
    • 2023
  • In this study, nanofiber-based textile sensors were developed for motion detection and monitoring. Poly(vinylidene fluoride) (PVDF) nanofibers containing zinc oxide (ZnO) nanoparticles and silver nanowires (AgNW) were fabricated using electrospinning. PVDF was chosen as a piezoelectric polymer, zinc oxide as a piezoelectric ceramic, and AgNW as a metal to improve electric conductivity. The PVDF/ZnO/AgNW nanocomposite fibers were used to develop a textile sensor, which was then incorporated into an elbow band to develop a wearable smart band. Changes in the output voltage and peak-to-peak voltage (Vp-p) generated by the joint's flexion and extension were investigated using a dummy elbow. The β-phase crystallinity of pure PVDF nanofibers was 58% when analyzed using Fourier transform infrared spectroscopy; however, the β-phase crystallinity increased to 70% in PVDF nanofibers containing ZnO and to 78% in PVDF nanocomposite fibers containing both ZnO and AgNW. The textile sensor's output voltage values varied with joint-bending angle; upon increasing the joint angle from 45° to 90° to 150°, the Vp-p value increased from 0.321 Vp-p to 0.542 Vp-p to 0.660 Vp-p respectively. This suggests that the textile sensor can be used to detect and monitor body movements.

마이크로 구조 및 동유체력을 이용한 나노와이어 미세 정렬 및 프린팅 기법 (Directional Alignment and Printing of One Dimensional Nanomaterials Using the Combination of Microstructure and Hydrodynamic Force)

  • 정용원;서정목;이상근;권혁호;이태윤
    • 한국재료학회지
    • /
    • 제23권10호
    • /
    • pp.586-591
    • /
    • 2013
  • The printing of nanomaterials onto certain substrates is one of the key technologies behind high-speed interconnection and high-performance electronic devices. For the printing of next-generation electronic devices, a printing process which can be applied to a flexible substrate is needed. A printing process on a flexible substrate requires a lowtemperature, non-vacuum process due to the physical properties of the substrate. In this study, we obtained well-ordered Ag nanowires using modified gravure printing techniques. Ag nanowires are synthesized by a silver nitrate ($AgNO_3$) reduction process in an ethylene glycol solution. Ag nanowires were well aligned by hydrodynamic force on a micro-engraved Si substrate. With the three-dimensional structure of polydimethylsiloxane (PDMS), which has an inverse morphology relative to the micro-engraved Si substrate, the sub-micron alignment of Ag nanowires is possible. This technique can solve the performance problems associated with conventional organic materials. Also, given that this technique enables large-area printing, it has great applicability not only as a next-generation printing technology but also in a range of other fields.

Ag Paste Using Ag Nanowires

  • Hong, Jun-Ui;Kim, Dae-Jin;Kong, Byung-Seon;Kim, Sang-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.546-546
    • /
    • 2012
  • Traditional screen printing is still a dominant method to print electrodes on c-Si solar cells. In order to achieve higher efficiency for c-Si solar cells, improvement of the electrode material is one of the key approaches. Shadowing loss can be reduced by using high aspect ratio finger electrode with width of finger electrode less than 80um. The rheological properties of Ag paste for applying c-Si solar cells are improved by using Ag nanowires. The printing properties including the aspect ratio of printed electrode can be improved with higher Thixotropic index (T.I.) values.

  • PDF

Analysis of Plasma Treatment Effects on a Compliant Substrate for High Conductive, Stretchable Ag Nanowires

  • Jeong, Jonghyun;Jeong, Jaewook
    • Applied Science and Convergence Technology
    • /
    • 제27권1호
    • /
    • pp.5-8
    • /
    • 2018
  • In this paper, plasma treatment effects on a ploy(dimethyl siloxane) substrate were analyzed for the applications of stretchable silver nanowire (Ag NWs) electrodes. The oxygen plasma treated sample shows the best performance compared to nitrogen treated and untreated samples. The lowest sheet resistance and reasonable stretching capability was achieved up to 20% strain condition without open circuit fail for the oxygen plasma treated sample.

Recent Trends in Human Motion Detection Technology and Flexible/stretchable Physical Sensors: A Review

  • Park, Inkyu
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.391-396
    • /
    • 2017
  • Human body motion detection is important in several industry sectors, such as entertainment, healthcare, rehabilitation, and so on. In this paper, we first discuss commercial human motion detection technologies (optical markers, MEMS acceleration sensors, infrared imaging, etc.) and then explain recent advances in the development of flexible and stretchable strain sensors for human motion detection. In particular, flexible and stretchable strain sensors that are fabricated using carbon nanotubes, silver nanowires, graphene, and other materials are reviewed.

기계적 안정성이 향상된 은나노와이어-그래핀옥사이드 하이브리드 투명 전도성 박막의 제작 (Fabrication of Silver Nanowire-Graphene Oxide Hybrid Transparent Conductive Thin Film with Improved Mechanical Stability)

  • 김주태;우주연;한창수
    • 한국정밀공학회지
    • /
    • 제32권10호
    • /
    • pp.903-909
    • /
    • 2015
  • In this study, we used GO (graphene oxide) in order to enhance the adhesion between Ag NWs (nanowires) and substrates. By using a mixture solution of GO and Ag NW, a vacuum filtration process was used to fabricate a 50nm diameter thin film. Next, by using a light annealing process, the mechanical and electrical stability of Ag NW network was improved without any other treatment. The physical properties of the Ag NW - GO hybrid transparent conductive thin film was characterized in terms of a bending test, resistance and transmittance test, and nanoscale imaging using field-emission scanning electron microscopy.

ZnO를 이용한 은 나노와이어 히터의 열 안정성 향상 (Improved Thermal Stability of Ag Nanowire Heaters with ZnO Layer)

  • 최원정;조성진
    • 한국전기전자재료학회논문지
    • /
    • 제30권8호
    • /
    • pp.530-534
    • /
    • 2017
  • Transparent film heaters employing silver nanowires (Ag NWs) have attracted increasing attention because of their widespread applications. However, the low thermal resistance of Ag NWs limits the maximum operating temperature of the Ag NW film heater. In this study, Ag NW film heaters with high mechanical and thermal stability were successfully developed. The thermal power-out characteristics of the Ag NW heaters were investigated as a function of the Ag NW density. The results revealed that the prepared flexible Ag NW heater possessed high thermal stability over $190^{\circ}C$ owing to ZnO encapsulation. This indicates that the Ag NW film with excellent thermal stability have remarkably high potential for use as electrodes in film heaters operating at high temperatures.

High-Performance Schottky Junction for Self-Powered, Ultrafast, Broadband Alternating Current Photodetector

  • Lim, Jaeseong;Kumar, Mohit;Seo, Hyungtak
    • 한국재료학회지
    • /
    • 제32권8호
    • /
    • pp.333-338
    • /
    • 2022
  • In this work, we developed silver nanowires and a silicon based Schottky junction and demonstrated ultrafast broadband photosensing behavior. The current device had a response speed that was ultrafast, with a rising time of 36 ㎲ and a falling time of 382 ㎲, and it had a high level of repeatability across a broad spectrum of wavelengths (λ = 365 to 940 nm). Furthermore, it exhibited excellent responsivity of 60 mA/W and a significant detectivity of 3.5 × 1012 Jones at a λ = 940 nm with an intensity of 0.2 mW cm-2 under zero bias operating voltage, which reflects a boost of 50 %, by using the AC PV effect. This excellent broadband performance was caused by the photon-induced alternative photocurrent effect, which changed the way the optoelectronics work. This innovative approach will open a second door to the potential design of a broadband ultrafast device for use in cutting-edge optoelectronics.