• 제목/요약/키워드: silver coating

검색결과 167건 처리시간 0.021초

3D 다공성 구조의 Ag-VGCF 코팅 분리막을 이용한 리튬금속 이차전지 수명향상 (Improving the Cycle Performance of Li Metal Secondary Batteries Using Three-Dimensional Porous Ag/VGCF-Coated Separators)

  • 이범희;함동완;;김정태;유선율
    • 전기화학회지
    • /
    • 제27권3호
    • /
    • pp.88-96
    • /
    • 2024
  • 리튬금속(Li metal)은 높은 비용량과 에너지 밀도, 낮은 표준 전극 전위로 인해 유망한 음극활 물질로 각광받아온 재료이지만, 충·방전 시 발생하는 수지상 결정인 덴드라이트(dendrite)로 인해 안전성 및 수명안정성에 한계가 있었다. 본 연구에서는 나노 파이버(Nano Fiber) 형태의 도전재인 vapor grown carbon fiber (VGCF)와 은(Ag)의 복합체가 코팅된 분리막을 개발하였으며, 해당 분리막이 리튬금속 음극의 전기화학 특성에 미치는 영향을 연구하였다. VGCF와 Ag의 시너지 효과를 확인하기 위하여 표면 처리되지 않은 분리막, VGCF만 단면 코팅 처리된 분리막을 각각 준비하여 Ag-VGCF 분리막과 비교 평가하였다. Bare 분리막의 경우, 초기 충·방전 과정에서 리튬금속 표면이 덴드라이트로 뒤덮인 반면, VGCF 분리막 및 Ag-VGCF 분리막 모두 분리막 표면에 코팅된 전도성 코팅층 내부에 리튬이 석출되는 거동을 보였다. 또한 Ag-VGCF 분리막은 VGCF 분리막 대비 더욱 균일한 형상의 석출 형태를 보였다. 그 결과 Ag-VGCF 분리막은 Bare 분리막 및 VGCF 분리막 대비 향상된 전기화학적 특성을 보였다.

집전체에 따른 NI-YSZ Cermet 기반의 가역적 고체산화물 연료전지를 이용한 고온 수증기 전기분해 특성 (Current Collector Effects on High Temperature Electrolysis by NI-YSZ Cermet Supported Solid Oxide Cells)

  • 신의철;안평안;서현호;이종숙;유지행;우상국
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.533-539
    • /
    • 2010
  • Ni-YSZ supported button cells were prepared by spray-coating YSZ and screen-printing YSZ-LSM powder as an electrolyte and oxygen electrode on Ni-YSZ cermet disks. In order to identify the polarization loss mechanism in high temperature electrolysis current-voltage characteristics coupled with electrochemical impedance spectroscopy were investigated as a function of temperature, current load, and the humidity. The effects of the different current collectors of platinum and silver for oxygen electrodes were compared. With Ag current collector two polarization losses were distinguished. The high frequency component was attributed to the Ni-YSZ cermet which was less susceptible to temperature variation but increasing in loss with humidity. The lower frequency component was attributed to the LSM electrode. Platinum current collector led to a much lower polarization loss.

A Study on the E-textiles Dip-Coated with Electrically Conductive Hybrid Nano-Structures

  • Lee, Euna;Kim, Jongjun
    • 패션비즈니스
    • /
    • 제21권6호
    • /
    • pp.16-30
    • /
    • 2017
  • Currently, e-textile market is rapidly expanding and the emerging area of e-textiles requires electrically conductive threads for diverse applications, including wearable innovative e-textiles that can transmit/receive and display data with a variety of functions. This study introduces hybrid nano-structures which may help increase the conductivity of the textile threads for use in wearable and flexible smart apparels. For this aim, Ag was selected as a conductive material, and yarn treatment was implemented where silver nanowire (AgNW) and graphene flake (GF) hybrid structures overcome the limitations of the AgNW alone. The yarn treatment includes several treatment conditions, e.g., annealing temperature, annealing time, binder material such as polyurethane (PU), coating time, in order to search for the optimum method to form stable conductive nano-scale composite materials as thin film on the surface of textile yarns. Treatedyarns showed improved electrical resistance readings. The functionality of the spandex yarn as a stretchable conductive thread was also demonstrated. When the yarn specimens were treated with colloid of AgNW/GF, relatively good electrical conductivity value was obtained. During the extension and recovery cycles of the treated yarns, the initial resistance values did not deteriorate significantly, since the network of nanowire structure with the support of GF and polyurethane stayed flexible and stable. Through this research, it was found that when one-dimensional structure of AgNW and two-dimensional structure of GF were mixed as colloids and treated on the surface of textile yarns, flexible and stretchable electrical conductor could be formed.

신축성있는 Ag 나노와이어 전극의 제조 및 전기변색 응용 (Fabrication of Stretchable Ag Nanowire Electrode and its Electrochromic Application)

  • 이진영;한송이;나윤채;박종운
    • 한국재료학회지
    • /
    • 제29권2호
    • /
    • pp.87-91
    • /
    • 2019
  • We report on stretchable electrochromic films of poly(3-hexylthiophene) (P3HT) fabricated on silver nanowire (AgNW) electrodes. AgNWs electrodes are prepared on polydimethylsiloxane (PDMS) substrates using a spray coater for stretchable electrochromic applications. On top of the AgNW electrode, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is introduced to ensure a stable resistance over the electrode under broad strain range by effectively suppressing the protrusion of AgNWs from PDMS. This bilayer electrode exhibits a high performance as a stretchable substrate in terms of sheet resistance increment by a factor of 1.6, tensile strain change to 40 %, and stretching cycles to 100 cycles. Furthermore, P3HT film spin-coated on the bilayer electrode shows a stable electrochromic coloration within an applied voltage, with a color contrast of 28.6 %, response time of 4-5 sec, and a coloration efficiency of $91.0cm^2/C$. These findings indicate that AgNWs/PEDOT:PSS bilayer on PDMS substrate electrode is highly suitable for transparent and stretchable electrochromic devices.

Novel Antibacterial, Cytotoxic and Catalytic Activities of Silver Nanoparticles Synthesized from Acidophilic Actinobacterial SL19 with Evidence for Protein as Coating Biomolecule

  • Wypij, Magdalena;Ostrowski, Maciej;Piska, Kamil;Wojcik-Pszczola, Katarzyna;Pekala, Elzbieta;Rai, Mahendra;Golinska, Patrycja
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권9호
    • /
    • pp.1195-1208
    • /
    • 2022
  • Silver nanoparticles (AgNPs) have potential applications in medicine, photocatalysis, agriculture, and cosmetic fields due to their unique physicochemical properties and strong antimicrobial activity. Here, AgNPs were synthesized using actinobacterial SL19 strain, isolated from acidic forest soil in Poland, and confirmed by UV-vis and FTIR spectroscopy, TEM, and zeta potential analysis. The AgNPs were polydispersed, stable, spherical, and small, with an average size of 23 nm. The FTIR study revealed the presence of bonds characteristic of proteins that cover nanoparticles. These proteins were then studied by using liquid chromatography with tandem mass spectrometry (LC-MS/MS) and identified with the highest similarity to hypothetical protein and porin with molecular masses equal to 41 and 38 kDa, respectively. Our AgNPs exhibited remarkable antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. The combined, synergistic action of these synthesized AgNPs with commercial antibiotics (ampicillin, kanamycin, streptomycin, and tetracycline) enabled dose reductions in both components and increased their antimicrobial efficacy, especially in the case of streptomycin and tetracycline. Furthermore, the in vitro activity of the AgNPs on human cancer cell lines (MCF-7, A375, A549, and HepG2) showed cancer-specific sensitivity, while the genotoxic activity was evaluated by Ames assay, which revealed a lack of mutagenicity on the part of nanoparticles in Salmonella Typhimurium TA98 strain. We also studied the impact of the AgNPs on the catalytic and photocatalytic degradation of methyl orange (MO). The decomposition of MO was observed by a decrease in intensity of absorbance within time. The results of our study proved the easy, fast, and efficient synthesis of AgNPs using acidophilic actinomycete SL19 strain and demonstrated the remarkable potential of these AgNPs as anticancer and antibacterial agents. However, the properties and activity of such particles can vary by biosynthesized batch.

Detachment of nanoparticles in granular media filtration

  • Kim, Ijung;Zhu, Tongren;Jeon, Chan-Hoo;Lawler, Desmond F.
    • Membrane and Water Treatment
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2020
  • An understanding of particle-particle interactions in filtration requires studying the detachment as well as the attachment of nanoparticles. Nanoparticles captured in a granular media filter can be released by changing the physicochemical factors. In this study, the detachment of captured silver nanoparticles (AgNPs) in granular media filtration was examined under different ionic strengths, ion type, and the presence or absence of natural organic matter (NOM). Filtration velocity and ionic strength were chosen as the physical and chemical factors to cause the detachment. Increasing filtration velocity caused a negligible amount of AgNP detachment. On the other hand, lowering ionic strength showed different release amounts depending on the background ions, implying a population of loosely captured particles inside the filter bed. Overall detachment was affected by ionic strength and ion type, and to a lesser degree by NOM coating which resulted in slightly more detachment (in otherwise identical conditions) than in the absence of that coating, possibly by steric effects. The secondary energy minimum with Na ions was deeper and wider than with Ca ions, probably due to the lack of complexation with citrate and charge neutralization that would be caused by Ca ions. This result implies that the change in chemical force by reducing ionic strength of Na ions could significantly enhance the detachment compared to that caused by a change in physical force, due to a weak electrostatic deposition between nanoparticles and filter media. A modification of the 1-D filtration model to incorporate a detachment term showed good agreement with experimental data; estimating the detachment coefficients for that model suggested that the detachment rate could be similar regardless of the amount of previously captured AgNPs.

Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation in Solutions Containing Ca, P and Zn

  • Hwang, In-Jo;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.120-120
    • /
    • 2016
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements, such as strontium (Sr), magnesium (Mg), zinc (Zn), sodium (Na), silicon (Si), silver (Ag), and yttrium (Y) are known to play an important role in the bone formation and also affect bone mineral characteristics, such as crystallinity, degradation behavior, and mechanical properties. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing $TiO_2(Zn-TiO_2)$coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation in solutions containing Ca, P and Zn were studied by scanning electron microscopy (SEM), AC impedance, and potentiodynamic polarization test. A series of $Zn-TiO_2$ coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to +2000mV. Also, AC impedance was performed at frequencies ranging from 10MHz to 100kHz for corrosion resistance.

  • PDF

신축성 금속 나노선 압저항 전극 기반 로젯 스트레인 센서 (Rosette Strain Sensors Based on Stretchable Metal Nanowire Piezoresistive Electrodes)

  • 김강현;차재경;김종만
    • 대한금속재료학회지
    • /
    • 제56권11호
    • /
    • pp.835-843
    • /
    • 2018
  • In this work, we report a delta rosette strain sensor based on highly stretchable silver nanowire (AgNW) percolation piezoresistors. The proposed rosette strain sensors were easily prepared by a facile two-step fabrication route. First, three identical AgNW piezoresistive electrodes were patterned in a simple and precise manner on a donor film using a solution-processed drop-coating of the AgNWs in conjunction with a tape-type shadow mask. The patterned AgNW electrodes were then entirely transferred to an elastomeric substrate while embedding them in the polymer matrix. The fabricated stretchable AgNW piezoresistors could be operated at up to 20% strain without electrical or mechanical failure, showing a maximum gauge factor as high as 5.3, low hysteresis, and high linearity ($r^2{\approx}0.996$). Moreover, the sensor responses were also found to be highly stable and reversible even under repeated strain loading/unloading for up to 1000 cycles at a maximum tensile strain of 20%, mainly due to the mechanical stability of the AgNW/elastomer composites. In addition, both the magnitude and direction of the principal strain could be precisely characterized by configuring three identical AgNW piezoresistors in a delta rosette form, representing the potential for employing the devices as a multidimensional strain sensor in various practical applications.

마이크로 링이 함유된 비혼합성 에멀젼 액적의 분류를 위한 Pinched Flow Fractionation 마이크로 채널 (Pinched Flow Fractionation Microchannel to Sort Microring-Containing Immiscible Emulsion Droplets)

  • 예우준;김형건;변도영
    • 한국가시화정보학회지
    • /
    • 제15권2호
    • /
    • pp.41-47
    • /
    • 2017
  • Microring/nanoring structure has high applicability for nano-antenna and biosensor thanks to its superior optical characteristics. Although coiling nanowires manufactured using immiscible emulsion droplets have an advantage in mass production, this process also forms nanowire bundles. In this study, we solved the nanowire bundle problem by size-selective sorting of the emulsion droplets in a pinched flow fractionation microchannel. Utilizing silver nanowires and immiscible emsulsion droplets, we investigated the correlation between the size of ring droplets and bundle droplet. We visualized the sorting process for glass particles and microring-containing emulsion droplets. Droplets were sorted based on their size, and the ratio of bundle droplets in solution decreased. This droplet-sorting strategy has potential to help the printing and coating process for manufacturing of ring structure patterns and developing of functional materials.

나노스케일 박막의 표면주름 형성을 통한 산란반사도 향상 (Diffuse Reflectance Enhancement through Wrinkling of Nanoscale Thin Films)

  • 김윤영
    • 대한기계학회논문집A
    • /
    • 제39권12호
    • /
    • pp.1245-1249
    • /
    • 2015
  • 본 연구에서는 나노스케일 박막의 표면주름 형성에 의한 산란반사도 향상을 평가하였다. 실리콘 기판 위에 120 nm 두께의 Poly(methyl metacrylate) 층을 스핀코팅(spin-coating)한 후, 20 nm 의 알루미늄 박막을 증착하여 시편을 제작하였다. 이를 오븐에서 $95^{\circ}C$의 온도로 2 시간 동안 풀림처리하여 표면주름을 형성하였다. 분광광도계로 가시광선 영역의 산란반사도를 측정한 결과 400 nm 파장에서 40%의 증가를 보였으며, 표면주름 위에 100 nm 의 은박막을 추가적으로 증착한 경우 산란반사도가 50%까지 향상되는 것을 확인하였다. 본 연구는 산란반사도의 증대를 요구하는 박막형 소자에 표면주름을 활할 수 있음을 제시한다.