• Title/Summary/Keyword: siloxane

Search Result 259, Processing Time 0.019 seconds

Synthesis and Chnracterization of Organophilic Montmorillonites Modified with Alkyl Siloxane Amino 01igomers (알킬실록산 아민 올리고머 구조를 함유한 친유성 몬모릴로나이트의 제조 및 특성평가)

  • 김효주;김용석;원종찬;이미혜;최길영
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.135-141
    • /
    • 2003
  • A series of organophilic montmorillonites (MMTs) modified with various alkyl siloxane amino oligomer groups have been synthesized and their properties were investigated. New organophilic MMTs containing siloxane amino oligomers with alkyl group instead of conventional alkyl amines were synthesized to improve thermal stability as well as gallery spacing. The organophilic MMTs were synthesized from MMT by utilizing the siloxane amino oligomers with various alkyl groups in the water/dioxane solution, which was performed without aq. HCl. Thermal decomposition temperature, gallery spacing, and hydrophobicity of synthesized organophilic MMTs were investigated. X-ray diffraction and TEM experiment results on new organophilic MMTs demonstrated that introduction of siloxane amine oligomers increased d-spacing between silicate layers. The decomposition temperatures of new organophilic MMTs measured by TGA was remarkably improved above 200℃ as compared with those of conventional alkyl substituted organophilic MMTs.

Curing Kinetics and Mechanical Properties for Siloxane Contained ETSO-DDM/BPH Epoxy System (Siloxane을 포함한 ETSO-DDM/BPH계 에폭시 시스템의 경화동력학 및 기계적 특성 분석)

  • Kim, Hyo-Mi;Kim, Jong-Min;Han, Jung-Geun;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.364-370
    • /
    • 2009
  • The curing kinetics and mechanical properties of siloxane-diaminodiphenylmethane (ETSO-DDM) on the two kinds of bisphenol (BPH) system which are DGEBA and DGEBF were investigated with the different contents of ETSO. To investigate the curing kinetics of the ETSO-DDM/BPH systems, differential scanning calorimeter (DSC) was used. The mechanical properties of ETSO-DDM/BPH systems were also examined by universal testing machine (UTM), tensile test and flexural test. From experimental results, the activation energies and mechanical properties of ETSO-DDM/BPH were improved with the decrease contents of ETSO. This was due to the high cross-linking density made from short length of ETSO-DDM, resulting in improving the mechanical inter-locking between ETSO-DDM and BPH in these systems.

Preparation and Photoluminescence Characteristics of Liquid Silicone Rubber Containing Cadmium Selenide Nanoparticles (Cadmium Selenide Nanoparticles을 함유하는 액상실리콘 고무의 제조와 형광특성)

  • Kang Doo-Whan;Lee Byoung-Chul;Kim Ji-Young
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.266-270
    • /
    • 2006
  • Poly [(dimethylmethylyinyl) siloxane] phosphineoxide (PMViSPO) was prepared by adding phosphorus oxychloride $(POCl_3)$ to poly (dimethylmethylyinyl) siloxane (PMViS) at $0^{\circ}C$ under nitrogen atmosphere. Cadmium selenide (CdSe) was prepared by reacting cadmium oxide (CdO), tetradecyl-phosphonic acid (TDPA), trioctylphosphine oxide (TOPO) at $300^{\circ}C$, and adding solution of dissolved Se to tributylphosphine (TBP) and trioctylphosphine (TOP) CdSe-poly [(dimethylmethylvinyl) siloxane] phosphine-oxide (CdSe-SPO) adduct was synthesised by adding PMViSPO to CdSe solution. Liquid silicone rubber composite (LSRC-1) was prepared by compounding $\alpha,\omega-vinyl$ poly (dimethylsiloxane) (VPMS), $\alpha,\omega-hydrogen$) poly(dimethylsiloxane) (HPMS), and CdSe under Pt catalyst, and also LSRC-2 was prepared from VPMS, HPMS, and CdSe-SPO using Pt catalyst. It was confirmed that CdSe nanoparticles with photoluminescence characteristics was dispersed uniformly in LSR matrix. The diameter of CdSe was $30\sim50nm$. By measuring the number of CdSe nanoparticles, 202 particles of CdSe in LSRC-2 and 165 particles of CdSe in LSRC-1 were dispersed in the same area of LSR matrix. Thermal stability for LSRC-2 compounded with CdSe-SPO was better than LSRC-1.

Properties of Epoxy Adhesive Modified with Siloxane-imide (실록산 이미드로 개질된 변성 에폭시 수지의 물성)

  • Kim, W.;Gong, H.J.
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.39-48
    • /
    • 2008
  • Peel strength of epoxy adhesives can be increased by adding some amounts of XNBR. In this case, thermal resistance of the adhesive will be decreased by decrease of glass transition temperature of the adhesive. Epoxy resin modified with siloxane-imide was synthesized to improve thermal resistance and peel strength of the adhesive, after that the properties of modified epoxy resin were compared with the commercial epoxy resin. When 5% XNBR was added to 30% modified epoxy resin, this adhesive showed 0.42 N/mm of peel strength and $155^{\circ}C$ of glass transition temperature. These properties are enough compared to the required properties by the industry, i.e., 0.3 N/mm and $150^{\circ}C$, respectively. Weight loss of the modified epoxy resin by the treatment of nitric acid and 0.1N NaOH was reduced, but weight gain by the humid condition was increased by the presence of benzene ring and imide ring. 30% modified epoxy resin blended with 5% XNBR showed 220% improvement in tensile strength and elongation compared to the case of common epoxy resin. This is due to the flexibility of the siloxane in the modified epoxy resin.

Novel Pyridinium Iodide Containing Siloxane High Performance Electrolyte for Dye-Sensitized Solar Cell

  • Lee, Soonho;Jeon, Youngtae;Lim, Youngdon;Cho, Younggil;Lee, Sangyoung;Kim, Whangi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2583-2588
    • /
    • 2013
  • A new type of solid and gel-state ionics based on siloxane pyridinium iodides was synthesized and used as electrolytes in dye-sensitized solar cells. The resulting electrolytes were characterized by $^1H$ NMR spectroscopy, TGA and diffusion coefficient. The synthesized siloxane pyridinium iodide electrolytes have characteristics of different chain length of siloxane moieties. The ion conductivities were given 2.7-3.2 S/cm. Among the three SiDPIs based electrolytes, DSSC employing the SiDPI2 gives an open circuit voltage of 0.704 V, a short-circuit current of 15.85 $mA/cm^2$ and conversion efficiency of 6.8% under light intensity of 100 $mW/cm^2$. In addition, the performance of the DSSCs showed relatively reasonable compared with the propylpyridinium iodide (PPI) electrolyte.

Effects of Pre-aeration on the Anaerobic Digestion of Sewage Sludge

  • Ahn, Young-Mi;Wi, Jun;Park, Jin-Kyu;Higuchi, Sotaro;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.59-66
    • /
    • 2014
  • The aim of this study was to assess the effect of pre-aeration on sludge solubilization and the behaviors of nitrogen, dissolved sulfide, sulfate, and siloxane. The results of this study showed that soluble chemical oxygen demand in sewage sludge could be increased through pre-aeration. The pre-aeration process resulted in a higher methane yield compared to the anaerobic condition (blank). The pre-aeration of sewage sludge, therefore, was shown to be an effective method for enhancing the digestibility of the sewage sludge. In addition, this result confirms that the pre-aeration of sewage sludge prior to its anaerobic digestion accelerates the growth of methanogenic bacteria. Removal rates for $NH_3$-N and T-N increased simultaneously during pre-aeration, indicating simultaneous nitrification and denitrification. The siloxane concentration in sewage sludge decreased by 40% after 96 hr of pre-aeration; in contrast, the sulfide concentration in sewage sludge did not change. Therefore, pre-aeration can be employed as an efficient treatment option to achieve higher methane yield and lower siloxane concentration in sewage sludge. In addition, reduction of nitrogen loading by pre-aeration can reduce operating costs to achieve better effluent water quality in wastewater treatment plant and benefit the anaerobic process by minimizing the toxic effect of ammonia.

Control of Surface Chemistry and Electrochemical Performance of Carbon-coated Silicon Anode Using Silane-based Self-Assembly for Rechargeable Lithium Batteries

  • Choi, Hyun;Nguyen, Cao Cuong;Song, Seung-Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2519-2526
    • /
    • 2010
  • Silane-based self-assembly was employed for the surface modification of carbon-coated Si electrodes and their surface chemistry and electrochemical performance in battery electrolyte depending on the molecular structure of silanes was studied. IR spectroscopic analyses revealed that siloxane formed from silane-based self-assembly possessed Si-O-Si network on the electrode surface and high surface coverage siloxane induced the formation of a stable solid-electrolyte interphase (SEI) layer that was mainly composed of organic compounds with alkyl and carboxylate metal salt functionalities, and PF-containing inorganic species. Scanning electron microscopy imaging showed that particle cracking were effectively reduced on the carbon-coated Si when having high coverage siloxane and thickened SEI layer, delivering > 1480 mAh/g over 200 cycles with enhanced capacity retention 74% of the maximum discharge capacity, in contrast to a rapid capacity fade with low coverage siloxane.

Pervaporation of Ternary Aqueous Alcohol Solutions through Poly(dimethyl siloxane) Membrane (Poly(dimethyl siloxane)막에 의한 삼성분 알코올수용액의 투과증발)

  • Kim, Sang-Jib;Kim, Jin-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1087-1095
    • /
    • 1996
  • Pervaporation experiments of ternary ethanol/isopropanol/water mixtures were performed using poly(dimethyl siloxane)(PDMS) membrane at $45^{\circ}C$ and the mutual effects of ethanol and isopropanol on the permeation characteristics were studied. Compared to the case of the binary aqueous ethanol or isopropanol solutions, the existence of ethanol or isopropanol in the ternary mixtures resulted in the depression of each other's permeation rate. The depression effect of ethanol on the isopropanol permeation was more considerable than the depression effect of isopropanol on the ethanol permeation. These decreases in the permeation rate were thought to be due to the larger interactions between permeants than the plasticizing effects of ethanol or isopropanol on the polymer membrane. The strong interactions between permeants reduced the driving forces for both ethanol and isopropanol permeation in the ternary mixtures.

  • PDF

Ionic Conductivity of Anion Receptor Grafted Siloxane Polymers for Solid Polymer Electrolytes

  • Lee, Won-Sil;Kim, Dong-Wook;Lee, Chang-In;Woo, Seong-Ihl;Kang, Yong-Ku
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • We have prepared siloxane polymers grafted with trifluoromethane-sulfonylamide and oligoether side chains for solid polymer electrolytes with enhanced ionic conductivity. The grafted trifluoromethane sulfonylamide groups seem to be effective as an anion recepting site to enhance the ionic conductivity of the solid polymer electrolyte. The anion receptor grafted siloxane polymers showed one order of magnitude higher ionic conductivity than the siloxane polymers without anion receptor grafts. The fitting parameter A of the VTF plot which was related to the carrier density of the electrolyte increased with increasing the number of grafted anion receptor. The results of experiment indicate that the anion-complexing site of the anion receptor grafted polymer host effectively traps the anions. The anion receptor grafted polymer was found to be a promising material for lithium polymer batteries.

Preparation and Thermal Conductivity of Poly(organosiloxane) Rubber Composite with Low Hardness (저경도 Poly(organosiloxane) Rubber Composite의 제조와 열전도 특성)

  • Kang Doo Whan;Yeo Hak Gue
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.161-165
    • /
    • 2005
  • $\alpha,\omega-Vinyl$ poly(dimethyl-methylphenyl) siloxane propelymer (VPMPS ) was prepared by the equilibrium polymerization of octamethylcyclotetrasiloxane $(D_4)$, 1,3,5-trimethyl-1,3,5-triphenylcyclotrisiloxane $(D_3^{MePh})$, and 1,1,3,3-tetramethyl-1,3-divinylsiloxane (MVS) as end-blocker. And also, $\alpha,\omega-hydrogen$ poly(dimethyl-methyltrifluoropropyl)siloxane prepolymer (HPDMFS) was prepared from $D_4$, 1,3,5-trimethyl-1,3.5-trifluoropropylcyclotrisiloxane $(D_3^{MeF3P})$, and 1,1,3,3-tetramethyldisiloxane. Poly(organosiloxane) rubber composite containing high thermal conductive filler was prepared by compounding VPMPS, HPDMFS, spherical alumina, and catalyst in high speed dissolver. The crosslinking density of poly (organosiloxane) composite was measured by oscillation rheometer. Poly(organosiloxane) composites of TC-POXR-2 and TC-POXR-4 prepared by controlling average diameters of thermal conductive filler, spherical alumina according to Horsfield's packing model were shown to 1.13 W/mK for TC-POXR-2 and 1.19 W/mK for TC-POXR-4.