• Title/Summary/Keyword: silicon substrate effect

Search Result 255, Processing Time 0.023 seconds

The Effect of Barrier Layer on Thin-film Silicon Solar Cell Using Graphite Substrates (탄소 기판을 이용한 박막 실리콘 태양전지의 배리어 층 효과)

  • Cho, Young Joon;Lee, Dong Won;Cho, Jun Sik;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.505-509
    • /
    • 2016
  • We have investigated the characteristics of amorphous silicon (a-Si) thin-film solar cell by inserting barrier layer. The conversion efficiency of a-Si thin-film solar cells on graphite substrate shows nearly zero because of the surface roughness of the graphite substrate. To enhance the performance of solar cells, the surface morphology of the back side were modified by changing the barrier layer on graphite. The surface roughness of graphite substrate with the barrier layer grown by plasma enhanced chemical vapor deposition (PECVD) reduced from ~2 um to ~75 nm. In this study, the combination of the barrier layer on graphite substrate is important to increase solar cell efficiency. We achieved ~ 7.8% cell efficiency for an a-Si thin-film solar cell on graphite substrate with SiNx/SiOx stack barrier layer.

Solid-Phase crystallization of amorphous silicon films deposited by plasma-enhanced chemical vapor deposition

  • Lee, Jung-Keun
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.1
    • /
    • pp.49-54
    • /
    • 1998
  • The effect of deposition paratmeters on the solid-phase crystallization of amorphous silicon films deposited by plasma-enhanced chemical vapor deposition has been investigated by x-ray diffraction. The amorphous silicon films were prepared on Si(100) wafers using SiH4 gas with and without H2 dilution at the substrate temperatures between 12$^{\circ}C$ and 38$0^{\circ}C$. The R. F. powers and the deposition pressures were also varied. After crystallizing at $600^{\circ}C$ for 24h, the films exhibited (111), (220), and (311) x-ray diffraction peaks. The (111) peak intensity increased as the substrate temperature decreased, and the H dilution suppressed the crystallization. Increasing R.F. powers within the limits of etching level and increasing deposition pressures also have enhanced the peak intensity. The peak intensity was closely related to the deposition rate, which may be an indirect indicator of structural disorder in amorphous silicon films. Our results are consistent with the fact that an increase of the structural disorder I amorphous silicon films enhances the grain size in the crystallized films.

A study on the Improvement of Surface Topography in CVD Aluminum Thin Films (화학증착 알루미늄 박막의 표면 상태 개선에 관한 연구)

  • 김영성;이경일;주승기
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.3
    • /
    • pp.115-120
    • /
    • 1993
  • Aluminum thin films were deposited on the silicon substrate by the pyrolysis of TrilsoButylAluminum (TIBA) in a cold wall LPCVD reactor. The effect of substrate on the surface topograply and the decomposition reaction was investigated. The activation energy for the decomposition of TIBA was turned out to be 1 eV from the Arrhenious plot. The surface topography of the CVD aluminum could be improved by the application of thin metal film, which was in-situ deposited on the silicon prior to CVD process.

  • PDF

The Effect of Geometric Shape of Amorphous Silicon on the MILC Growth Rate (MILC 성장 속도에 비정질 실리콘의 기하학적 형상이 미치는 영향)

  • Kim Young-Su;Kim Min-Sun;Joo Seung-Ki
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.477-481
    • /
    • 2004
  • High quality polycrystalline silicon is very critical part of the high quality thin film transistor(TFT) for display devices. Metal induced lateral crystallization(MILC) is one of the most successful technologies to crystallize the amorphous silicon at low temperature(below $550^{\circ}C$) and uses conventional and large glass substrate. In this study, we observed that the MILC behavior changed with abrupt variation of the amorphous silicon active pattern width. We explained these phenomena with the novel MILC mechanism model. The 10 nm thick Ni layers were deposited on the glass substrate having various amorphous silicon patterns. Then, we annealed the sample at $550^{\circ}C$ with rapid thermal annealing(RTA) apparatus and measured the crystallized length by optical microscope. When MILC progress from narrow-width-area(the width was $w_2$) to wide-width-area(the width was $w_1$), the MILC rate decreased dramatically and was not changed for several hours(incubation time). Also the incubation time increased as the ratio, $w_1/w_2$, get larger. We can explain these phenomena with the tensile stress that was caused by volume shrinkage due to the phase transformation from amorphous silicon to crystalline silicon.

Study on the Luminescence of Si Nanocrystallites on Si Substrate fabricated by Changing the Wavelength of Pulsed Laser Deposition (펄스레이저 증착법의 레이저 파장변환에 의한 실리콘 나노결정의 발광 특성 연구)

  • 김종훈;전경아;최진백;이상렬
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.4
    • /
    • pp.169-172
    • /
    • 2003
  • Silicon nanocrystalline thin films on p-type (100) silicon substrate have been fabricated by pulsed laser deposition technique using a Nd:YAG laser with the wavelength of 355, 532, and 1064 nm. The base vacuum in the chamber was down to $10^-6$ Torr and the laser energy densities were 1.0~3.0 J/$\textrm{cm}^2$ After deposition, silicon nanocrystalline thin films have been annealed at nitrogen gas. Strong Blue and green luminescence from silicon nanocrystalline thin films have been observed at room temperature by photoluminescence and its peak energies shift to green when the wavelength is increased from 355 to 1064 nm.

Impact of strained channel on the memory margin of Cap-less memory cell (스트레인드 채널이 무캐패시터 메모리 셀의 메모리 마진에 미치는 영향)

  • Lee, Choong-Hyeon;Kim, Seong-Je;Kim, Tae-Hyun;O, Jeong-Mi;Choi, Ki-Ryung;Shim, Tae-Hun;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.153-153
    • /
    • 2009
  • We investigated the dependence of the memory margin of the Cap-less memory cell on the strain of top silicon channel layer and also compared kink effect of strained Cap-less memory cell with the conventional Cap-less memory cell. For comparison of the characteristic of the memory margin of Cap-less memory cell on the strain channel layer, Cap-less transistors were fabricated on fully depleted strained silicon-on-insulator of 0.73-% tensile strain and conventional silicon-on-insulator substrate. The thickness of channel layer was fabricated as 40 nm to obtain optimal memory margin. We obtained the enhancement of 2.12 times in the memory margin of Cap-less memory cell on strained-silicon-on-insulator substrate, compared with a conventional SOI substrate. In particular, much higher D1 current of Cap-less memory cell was observed, resulted from a higher drain conductance of 2.65 times at the kink region, induced by the 1.7 times higher electron mobility in the strain channel than the conventional Cap-less memory cell at the effective field of 0.3MV/cm. Enhancement of memory margin supports the strained Cap-less memory cell can be promising substrate structures to improve the characteristics of Cap-less memory cell.

  • PDF

Synthesis of zeolite MFI films on alumina and silicon supports using seed crystals (알루미나와 실리콘 지지체에 종자결정에 의한 제올라이트 MFI 필름의 합성)

  • Ko, Tae-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2008
  • Contiuous c-oriented zeolite MFI films $(<35{\mu}m)$ were prepared by hydrothermal secondary growth of silicalite-1 seed crystal in the surface of alumina porous substrate and silicon substrate. The supported films were characterized with scanning electron microscopy and X-ray diffraction. Effect of substrate surface roughness were investigated and a mechanism for c-oriented film formation and characteristic dom-like defects formation which is observed after seeding growth was discussed. The roughness of substrate plays an important role.

Fabrication of Silicon Nanowire Field-effect Transistors on Flexible Substrates using Direct Transfer Method (전사기법을 이용한 실리콘 나노선 트랜지스터의 제작)

  • Koo, Ja-Min;Chung, Eun-Ae;Lee, Myeong-Won;Kang, Jeong-Min;Jeong, Dong-Young;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.413-413
    • /
    • 2009
  • Silicon nanowires (Si NWs)-based top-gate field-effect transistors (FETs) are constructed by using Si NWs transferred onto flexible plastic substrates. Si NWs are obtained from the silicon wafers using photolithography and anisotropic etching process, and transferred onto flexible plastic substrates. To evaluate the electrical performance of the silicon nanowires, we examined the output and transfer characteristics of a top-gate field-effect transistor with a channel composed of a silicon nanowire selected from the nanowires on the plastic substrate. From these FETs, a field-effect mobility and transconductance are evaluated to be $47\;cm^2/Vs$ and 272 nS, respectively.

  • PDF

Simulation of Silicon Carbide Converted Graphite by Chemical Vapor Reaction (Ⅰ) (화학적 기상 반응에 의한 탄화규소 피복 흑연의 시뮬레이션(Ⅰ))

  • Lee, Joon-Sung;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.846-852
    • /
    • 2001
  • A two-dimensional Monte Carlo simulation has been used to investigate the effect of the reaction temperature on the formation of the silicon carbide conversion layer near the surface of graphite substrate The carbothermal reduction of silica is the reaction mechanism of silicon carbide formation on graphite substrate by chemical vapor reaction methods. The chemical composition of silicon carbide conversion layer gradually changes from carbon to silicon carbide because gaseous reactants diffuse through micropores within graphite substrate and react with carbon at the surface of inner pores. The simulation was carried out under the condition of reaction temperature at 1900K, 2000K, 2100K and 2200K for 500MCS. It was found from the results of simulation that the thickness of silicon carbide conversion layer increases with reaction temperature.

  • PDF

Electrical Characteristics of SiC Lateral P-i-N Diodes Fabricated on SiC Semi-Insulating Substrate

  • Kim, Hyoung Woo;Seok, Ogyun;Moon, Jeong Hyun;Bahng, Wook;Jo, Jungyol
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.387-392
    • /
    • 2018
  • Static characteristics of SiC (silicon carbide) lateral p-i-n diodes implemented on semi-insulating substrate without an epitaxial layer are inVestigated. On-axis SiC HPSI (high purity semi-insulating) and VDSI (Vanadium doped semi-insulating) substrates are used to fabricate the lateral p-i-n diode. The space between anode and cathode ($L_{AC}$) is Varied from 5 to $20{\mu}m$ to inVestigate the effect of intrinsic-region length on static characteristics. Maximum breakdown Voltages of HPSI and VDSI are 1117 and 841 V at $L_{AC}=20{\mu}m$, respectiVely. Due to the doped Vanadium ions in VDSI substrate, diffusion length of carriers in the VDSI substrate is less than that of the HPSI substrate. A forward Voltage drop of the diode implemented on VDSI substrate is 12 V at the forward current of $1{\mu}A$, which is higher than 2.5 V of the diode implemented on HPSI substrate.