• Title/Summary/Keyword: silicon nanoparticles

Search Result 109, Processing Time 0.029 seconds

Synthesis and Surface-derivatization of Silicon Nanoparticles and their Photoluminescence and Stability

  • Lee, Sung-Gi;Lee, Bo-Yeon;Hwang, Minwoo;Cho, Hyun;Kim, Hee-Chol;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.4 no.4
    • /
    • pp.282-288
    • /
    • 2011
  • We describe the synthesis and characterization of silicon nanoparticles prepared by the solution reduction of silicon tetrachloride by lithium naphthalenide and subsequently with n-butyllithium at room temperature. These reactions produce silicon nanoparticles with surfaces that are covalently terminated with butyl group. Reaction with lithium aluminium hydride instead of n-butyllithium produces hydride-terminated silicon nanoparticles. The butyl or hydride terminated silicon nanoparticles can be suspended in hexane and their optical behavior have been characterized by photoluminescence spectroscopy. Stabilization of silicon nanoparticles were investigated upon illumination, indicating that as-prepared silicon nanoparticles are very stable at room temperature for several days.

Investigation of Oxidation of Silicon Nanoparticles Capped with Butyl and Benzophenone against Its Stabilization (Benzophenone과 알킬 그룹으로 Capping된 실리콘 나노입자의 안정성에 대한 산화 연구)

  • Jang, Seunghyun
    • Journal of Integrative Natural Science
    • /
    • v.3 no.3
    • /
    • pp.133-137
    • /
    • 2010
  • New synthetic route and characterization of alkyl-capped nanocrystalline silicon (R-n-Si) were achieved from the reaction of silicon tetrachloride with sodium/benzophenone ketal reducing agent followed by n-butyllithium. Surface of silicon nanoparticles was derivatized with butyl group. Effect of oxidation of silicon nanoparticle with benzophenone was investigated for their stabilization. Optical characteristics of silicon nanoparticles were characterized by fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), and photoluminescence (PL) spectroscopy. Butyl-capped silicon nanoparticles exhibited an emission band at 410 nm with excitation wavelength of 360 nm. Average size of n-butyl-capped silicon nanoparticles was obtained by particle size analyzer (PSA) and transmission electron microscopy (TEM). Average size of n-butyl-capped Si nanoparticles was about 6.5 nm.

A New Approach to Synthesis and Photoluminescence of Silicon Nanoparticles

  • Kim, Beomsuk
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.28-31
    • /
    • 2009
  • We describe the synthesis and characterization of silicon nanoparticles prepared by the soluton reduction of SiCl4. These reactions produce Si nanoparticles with surfaces that are covalently terminated. The resultant organic derivatized Si nanoparticles as well as a probable distribution of Water-soluble Si nanoparticles are observed and characterized by photoluminescence(PL) spectroscopy. This work focuses originally on the organic- and water-soluble silicon nanoparticles in terms of the photoluminescence. Further this work displays probably the first layout of hydrogen terminated Si nanoparticles synthesized in solution at room temperature.

  • PDF

Influence of silver nanoparticles on the photovoltaic parameters of silicon solar cells

  • Dzhafarov, Tayyar D.;Pashaev, Arif M.;Tagiev, Bahadur G.;Aslanov, Shakir S.;Ragimov, Shirin H.;Aliev, Akper A.
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.133-141
    • /
    • 2015
  • Influence of Ag nanoparticles on optical and photovoltaic properties of, silicon substrates, silicon solar cells and glass have been investigated. Silver nanoparticles have been fabricated by evaporation of thin Ag layers followed by the thermal annealing. The surface plasmon resonance peak was observed in the absorbance spectrum at 470 nm of glass with deposited silver nanoparticles. It is demonstrated that deposition of silver nanoparticles on silicon substrates was accompanied with a significant decrease in reflectance at the wavelength 360-1100 nm and increase of the absorption at wavelengths close to the band gap for Si substrates. We studied influence of Ag nanoparticles on photovoltaic characteristics of silicon solar cells without and with common use antireflection coating (ARC). It is shown that silver nanoparticles deposited onto the front surface of the solar cells without ARC led to increase in the photocurrent density by 39% comparing to cells without Ag nanoparticles. Contrary to this, solar cells with Ag nanoparticles deposited on front surface with ARC discovered decrease in photocurrent density. The improved performance of investigated cells was attributed to Ag-plasmonic excitations that reduce the reflectance from the silicon surface and ultimately leads to the enhanced light absorption in the cell. This study showed possibility of application of Ag nanoparticles for the improvement of the conversion efficiency of waferbased silicon solar cells instead of usual ARC.

Characteristics of Silicon Nanoparticles Depending on H2 Gas Flow During Nanoparticle Synthesis via CO2 Laser Pyrolysis (CO2 레이저 열분해법을 이용한 실리콘 나노입자 합성 시 H2 유량이 나노입자 특성에 미치는 영향)

  • Lee, Jae Hee;Kim, Seongbeom;Kim, Jongbok;Hwang, Taekseong;Lee, Jeong Chul
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.260-265
    • /
    • 2013
  • Silicon nanoparticle is a promising material for electronic devices, photovoltaics, and biological applications. Here, we synthesize silicon nanoparticles via $CO_2$ laser pyrolysis and study the hydrogen flow effects on the characteristics of silicon nanoparticles using high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and UV-Vis-NIR spectrophotometry. In $CO_2$ laser pyrolysis, used to synthesize the silicon nanoparticles, the wavelength of the $CO_2$ laser matches the absorption cross section of silane. Silane absorbs the $CO_2$ laser energy at a wavelength of $10.6{\mu}m$. Therefore, the laser excites silane, dissociating it to Si radical. Finally, nucleation and growth of the Si radicals generates various silicon nanoparticle. In addition, researchers can introduce hydrogen gas into silane to control the characteristics of silicon nanoparticles. Changing the hydrogen flow rate affects the nanoparticle size and crystallinity of silicon nanoparticles. Specifically, a high hydrogen flow rate produces small silicon nanoparticles and induces low crystallinity. We attribute these characteristics to the low density of the Si precursor, high hydrogen passivation probability on the surface of the silicon nanoparticles, and low reaction temperature during the synthesis.

Detection of Nitroaromatic Compounds Based on Silicon Nanoparticles (실리콘 나노 입자를 이용한 니트로방향족 화합물의 탐지)

  • Song, Jinwoo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.37-40
    • /
    • 2009
  • Synthesis and characterization of alkyl-capped nanocrystalline silicon (R-n-Si) have been achieved from the reaction of silicontetrachloride with magnesiumsilicide. Surface of silicon nanocrystal has been derivatized with various alkyl groups (R=methyl, n-butyl, etc.). Silicon nanoparticles have been also obtained by the sonication of luminescent porous silicon. Former exhibits an emission band at 360 nm, but latter exhibits an emission band at 680 nm. In this study very sensitive detection of TNT (2,4,6-trinitrotoluene), DNT (2,4-dinitrotoluene), NB (nitrobenzene), and PA (picric acid) has been achieved in gas phase with porous silicon using photoluminescence quenching of the silicon crystallites as a transduction mode. Porous silicon are electrochemically etched from crystalline silicon wafers in an aqueous solution of hydrofluoric acid. We have characterized these silicon nanoparticles by Luminescence Spectrometer (LS 55).

  • PDF

Plasma Synthesis of Silicon Nanoparticles for Next Generation Photovoltaics

  • Kim, Ka-Hyun;Kim, Dong Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.135.1-135.1
    • /
    • 2014
  • Silicon nanoparticles can be synthesized in a standard radio-frequency glow discharge system at low temperature (${\sim}200^{\circ}C$). Plasma synthesis of silicon nanoparticles, initially a side effect of powder formation, has become over the years an exciting field of research which has opened the way to new opportunities in the field of materials deposition and their application to optoelectronic devices. Hydrogenated polymorphous silicon (pm-Si:H) has a peculiar microstructure, namely a small volume fraction of plasma synthesized silicon nanoparticles embedded in an amorphous matrix, which originates from the unique deposition mechanism. Detailed discussion on plasma synthesis of silicon nanoparticles, growth mechanism and photovoltaic application of pm-Si:H will be presented.

  • PDF

Preparation of Silicon Nanoparticles for the Device of Photoluminescence (발광소자를 위한 실리콘 나노 미립자 제작)

  • Choi, Byoung-Jung;Lee, Jung-Hui;Yang, Sung-Chae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.131-132
    • /
    • 2006
  • We experimentally demonstrated the synthesis of silicon nanoparticles by using high-density ablation plasma prepared by the interaction of an intense pulsed light-ion beam (LIB) with a target. known as the intense pulsed ion beam evaporation (IBE) method. Light emission was obtained from the silicon nanoparticles. It was determined that the ambient gas reaction is very important and useful method to obtain the photoluminescence from the silicon nanoparticles.

  • PDF

Effect of Silver Nanoparticles with Indium Tin Oxide Thin Layers on Silicon Solar Cells

  • Oh, Gyujin;Kim, Eun Kyu
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.91-94
    • /
    • 2017
  • AThe effect of localized surface plasmon on silicon substrates was studied using silver nanoparticles. The nanoparticles were formed by self-arrangement through the surface energy using rapid thermal annealing (RTA) technique after the thin nanolayer of silver was deposited by thermal evaporation. By the theoretical calculation based on Mie scattering and dielectric function of air, indium tin oxide (ITO), and silver, the strong peak of scattering cross section of silver nanoparticles was found at 358 nm for air, and 460 nm for ITO, respectively. Accordingly, the strong suppression of reflectance under the condition of induced light of $30^{\circ}$ occurred at the specific wavelength which is almost in accordance with peak of scattering cross section. When the external quantum efficiency was measured using silicon solar cells with silver nanoparticles, there was small enhancement peak near the 460 nm wavelength in which the light was resonated between silver nanoparticles and ITO.

Characterization of Hydrogel Tinted Contact Lens Containing 4-iodoaniline using Titanium Silicon Oxide Nanoparticles as Additive (티타늄 실리콘 옥사이드 나노입자를 첨가제로 사용한 4-iodoaniline을 포함한 하이드로젤 착색 콘택트렌즈의 특성)

  • Cho, Seon-Ahr;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.3
    • /
    • pp.315-322
    • /
    • 2014
  • Purpose: The physical and optical characteristics of hydrophilic tinted contact lens containing titanium silicon oxide nanoparticles and the basic hydrogel contact lens material containing 4-iodoaniline were examined. In this study, the utility of titanium silicon oxide nanoparticles as a UV-blocking material for ophthalmologic devices were investigated by measuring the UV transmittance of the produced polymer. Also, titanium silicon oxide nanoparticles only without the addition of 4-iodoaniline in primary contact lens materials by copolymerizing two groups were compared. Methods: For manufacturing hydrogel lens, HEMA, MA, MMA, 4-iodoaniline and a cross-linker EGDMA were copolymerized in the presence of AIBN as an initiator. Also, the titanium silicon oxide nanoparticles was used as additive. After polymerization the physical properties such as water content, refractive index, contact angle and spectral transmittance of produced contact lenses were measured. Results: Measurement of the physical properties of the copolymerized material showed that the water content, refractive index, UV-B transmittance and contact angle were in the range of 35.01~38.60%, 1.4350~1.4418, $34.15{\sim}57.25^{\circ}$ and 1.0~10.0%, respectively. Titanium silicon oxide nanoparticles is not used as an additive in the experimental group, the results of the measurement showed that the water content, refractive index, contan angle and UV-B transmittance of the hydrogel lens polymer was 34.00~36.80%, 1.4378~1.4420, $40.15{\sim}60.16^{\circ}$ and 1.8~25.0%, respectively. Conclusions: Also, the transmittance for UV light was reduced significantly in combinations containing titanium oxide nanoparticles.