Browse > Article
http://dx.doi.org/10.13160/ricns.2011.4.4.282

Synthesis and Surface-derivatization of Silicon Nanoparticles and their Photoluminescence and Stability  

Lee, Sung-Gi (Department of Chemistry, Chosun University)
Lee, Bo-Yeon (Department of Chemistry, Chosun University)
Hwang, Minwoo (Department of Chemistry, Chosun University)
Cho, Hyun (Department of Chemistry, Chosun University)
Kim, Hee-Chol (Department of Chemistry, Chosun University)
Sohn, Honglae (Department of Chemistry, Chosun University)
Publication Information
Journal of Integrative Natural Science / v.4, no.4, 2011 , pp. 282-288 More about this Journal
Abstract
We describe the synthesis and characterization of silicon nanoparticles prepared by the solution reduction of silicon tetrachloride by lithium naphthalenide and subsequently with n-butyllithium at room temperature. These reactions produce silicon nanoparticles with surfaces that are covalently terminated with butyl group. Reaction with lithium aluminium hydride instead of n-butyllithium produces hydride-terminated silicon nanoparticles. The butyl or hydride terminated silicon nanoparticles can be suspended in hexane and their optical behavior have been characterized by photoluminescence spectroscopy. Stabilization of silicon nanoparticles were investigated upon illumination, indicating that as-prepared silicon nanoparticles are very stable at room temperature for several days.
Keywords
Silicon Nanoparticles; Surface-derivatization; Photoluminescence; Stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. L. Gole, B. Clemens, Z. L. Wang, and M. White, "Unusual properties and reactivity at the nanoscale", J. Phys. Chem. Solids, Vol. 66, p. 546, 2005.   DOI   ScienceOn
2 K. A. Pettigrew, Q. Liu, P. P. Power, and S. M. Kauzlarich, "Solution Synthesis of Alkyl- and Alkyl/ Alkoxy-Capped Silicon Nanoparticles via Oxidation of Mg2Si", Chem. Mater., Vol. 15, p. 4005, 2003.   DOI   ScienceOn
3 R. A. Bley and S. M. Kauzlarich, "A Low-Temperature Solution Phase Route for the Synthesis of Silicon Nanoclusters", J. Am. Chem. Soc., Vol. 118, p. 12461, 1996.   DOI   ScienceOn
4 C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites", J. Am. Chem. Soc., Vol. 115, p. 8706, 1993.   DOI   ScienceOn
5 J. E. B. Katari, V. L. Colvin, and A. P. Alivisatos, "X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface", J. Phys. Chem., Vol. 98, p. 4109, 1994.   DOI   ScienceOn
6 F. V. Mikulec, M. Kuno, M. Bennati, D. A. Hall, R. G. Griffin, and M. G. Bawendi, "Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals", J. Am. Chem. Soc., Vol. 122, p. 2532, 2000.   DOI   ScienceOn
7 C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, "Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition", Science, Vol. 277, p. 1978, 1997.   DOI   ScienceOn
8 V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, "Light-emitting diodes made from cadmium selenide nanocrystals and a semidomducting polymer", Nature, Vol. 370, p. 354, 1994.   DOI   ScienceOn
9 W. C. W. Chan and S. M. Nie, "Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection", Science, Vol. 281, p. 2016, 1998.   DOI
10 M. O. M. Piepenbrock, T. Stirner, M. Kelly, and M. O'Neill, "A Low-Temperature Synthesis for Organically Soluble HgTe Nanocrystals Exhibiting Near- Infrared Photoluminescence and Quantum Confinement", J. Am. Chem. Soc., Vol. 128, p. 7087, 2006.   DOI   ScienceOn
11 L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers", Appl. Phys. Lett., Vol. 57, p. 1046, 1990.   DOI
12 J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and A. Korgel Brian, "Highly Luminescent Silicon Nanocrystals with Discrete Optical Transitions", J. Am. Chem. Soc., Vol. 123, p. 3743, 2001.   DOI   ScienceOn
13 G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, and L. Mitas, "Observation of a magic discrete family of ultrabright Si nanoparticles", Appl. Phys. Lett., Vol. 80, p. 841, 2002.   DOI   ScienceOn
14 D. Mayeri, B. L. Phillips, M. P. Augustine, and S. M. Kauzlarich, "NMR Study of the Synthesis of Alkyl-Terminated Silicon Nanoparticles from the Reaction of SiCl4 with the Zintl Salt, NaSi", Chem. Mater., Vol. 13, p. 765, 2001.   DOI   ScienceOn
15 J. R. Heath, "A Liquid-Solution-Phase Synthesis of Crystalline Silicon", Science, Vol. 258, p. 1131, 1992.   DOI   ScienceOn
16 A. Kornowski, M. Giersig, R. Vogel, A. Chemseddine, and H. Weller, "Nanometer-sized colloidal germanium particles: Wet-chemical synthesis, laserinduced crystallization and particle growth", Adv. Mater., Vol. 5, p. 634, 1993.   DOI   ScienceOn
17 J. P. Wilcoxon and G. A. Samara, "Tailorable, visible light emission from silicon nanocrystals", Appl. Phys. Lett., Vol. 74, p. 3164, 1999.   DOI
18 N. A. Dhas, C. P. Raj, and A. Gedanken, "Preparation of Luminescent Silicon Nanoparticles: A Novel Sonochemical Approach", Chem. Mater., Vol. 10, p. 3278, 1998.   DOI   ScienceOn
19 J. M. Buriak, "Organometallic chemistry on silicon and germanium surfaces", Chem. Rev., Vol. 102, p. 1271, 2002.   DOI   ScienceOn
20 X. Li, Y. He, and M. T. Swihart, "Electrochemical Deposition of Silver in Room-Temperature Ionic Liquids and Its Surface-Enhanced Raman Scattering Effect", Langmuir, Vol. 20, p. 4720, 2004.   DOI   ScienceOn
21 R. S. Carter, S. J. Harley, P. P. Power, and M. P. Augustine, "Use of NMR Spectroscopy in the Synthesis and Characterization of Air- and Water-Stable Silicon Nanoparticles from Porous Silicon", Chem. Mater., Vol. 17, p. 2932, 2005.   DOI   ScienceOn
22 A. P. Alivisatos, "Perspectives on the Physical Chemistry of Semiconductor Nanocrystals", J. Phys. Chem., Vol. 100, p. 13226, 1996.   DOI   ScienceOn
23 E. W. Draeger, J. C. Grossman, A. J. Williamson, and G. Galli, "Influence of Synthesis Conditions on the Structural and Optical Properties of Passivated Silicon Nanoclusters", Phys. Rev. Lett., Vol. 90, p. 167402, 2003.   DOI
24 J. H. Song and M. J. Sailor, "Reaction of Photoluminescent Porous Silicon Surfaces with Lithium Reagents To Form Silicon-Carbon Bound Surface Species", Inorg. Chem., Vol. 38, p. 1498, 1999.   DOI   ScienceOn
25 L. T. Canham, A. Loni, P. D. J. Calcott, A. J. Simons, C. Reeves, M. R. Houlton, and J. P. Newey, "On the origin of blue luminescence arising from atmospheric impregnation of oxidized porous silicon", Thin Solid Films, Vol. 276, p. 112, 1996.   DOI   ScienceOn
26 H. Koyama, Y. Matsushita, and N. Koshita, "Activation of blue emission from oxidized porous silicon by annealing in water vapor", J. Appl. Phys., Vol. 83, p. 1776, 1998.   DOI   ScienceOn
27 A. O. Konstantinov, A. Henry, C. I. Harris, and E. Janzen, "Photoluminescence studies of porous silicon carbide", Appl. Phys. Lett., Vol. 66, p. 2250, 1995.   DOI   ScienceOn
28 X. Zhao, O. Schoenfield, S. Kumuro, Y. Aoyagi, and T. Sunago, "Quantum confinement in nanometersized silicon crystallites", Phys. Rev. B Vol. 50, p. 18654, 1994.   DOI   ScienceOn
29 X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, "Process for Preparing Macroscopic Quantities of Brightly Photoluminescent Silicon Nanoparticles with Emission Spanning the Visible Spectrum", Langmuir, Vol. 19, p. 8490, 2003.   DOI   ScienceOn