• Title/Summary/Keyword: silicon gel

Search Result 126, Processing Time 0.019 seconds

Fabrication of Silicon Nitride Ceramics by Gel-Casting and Microwave Gas Phase Reaction Sintering(I) : Silicon Gel-Casting (Gel-Casting 및 마이크로파 기상반응소결에 의한 질화규소 세라믹 제조에 대한 연구(I) : Gel-Casting에 의한 실리콘 성형체의 제조)

  • Bai, Kang;Woo, Sang-Kuk;Han, In-Sub;Seo, Doo-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.348-353
    • /
    • 2011
  • By gel-casting, the silicon-polymer green bodies were prepared for silicon nitride ceramics, sintered by microwave gas phase reaction. Considering the viscosity and the idle time of slurries, we decided the operational conditions of related processes, and the optimum concentrations of raw materials powders, organic monomers, cross-linker, dispersant, initiator, and catalyst. So we could get the machinable green bodies, having about 50 MPa of bending strength without cracks by selecting drying conditions carefully.

The Effects on Alkoxy Group and Catalyst in Hydrolysis of Silicon Alkoxide System (Silicon Alkoxide계 가수분해에서 Alkoxy Group과 촉매의 첨가에 대한 영향)

  • ;;Sumio Sakka
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.6
    • /
    • pp.561-571
    • /
    • 1987
  • In case of glass ceramics and powder preparation from the metalakoxide solutions, metalakoxide solutions with a various species of alkoxy groups have unique characteristics. Therefore, in this study, the mixing ability of homogeneous sol, gel morphology and physical properties of gels were investigated by the changes in terms of the different four alkoxy groups, CH3-, C2H5-, i-C3H7-n-C4H9-, along with the catalyst for the purpose of the observation about the homogenous transition range from sol to gel. As a result, when the fixed condition was mol ratio of H2O/Si(OR)4=2.0 and variables were batch composition and addition amount of catalyst, the characteristics of Tetra-normal-Butoxysilane and Tetra-iso-propoxysilane systems had very narrow sol-gel conversion region than Tetramethoxysilane and Tetraethoxysilane system. And silicon-alkoxide, systems having narrow sol-gel conversion region were enlarged by addition of catalyst. In viewpoint of the weight loss of gel produced by hydrolysis of silicon alkoxide systems with different four alkoxy groups, the amounts of weight loss of gel containing large molecular alkoxy groups were much more than those of small molecular alkoxy group.

  • PDF

Usefulness of Silicon Bolus Using 3D Printing of Head and Neck Patients (두경부 환자의 3D Printing을 이용한 Silicon Bolus의 유용성)

  • Kwon, Kyung-Tae;Lee, Yong-Ki;Won, Young-Jin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.909-916
    • /
    • 2019
  • Radiation therapy of oral and head and neck cancers often involves skin in the therapeutic range, and the use of bolus is frequently used. Dose irregularities provide dose uncertainty in patient application. In this study, the physical properties of patients with gel bolus, poly lactic acid (PLA), and silicon using 3D printing were fabricated. Dose uncertainties arising from the actual radiation dose delivery were measured. As a result, PLA bolus was stable in the Common irregularities. Silicon bolus may be useful for patients with severe irregularities or frequent changes in patient's body shape.

Critical factors in sol-gel transition of silicon metal alkoxide solutions (Silicon metal alkoxide 용액의 sol-gel 전이에서 중요인자)

  • ;;Hiromitsu Kozuka;Sumio Sakka
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.332-342
    • /
    • 1995
  • The important factors of reaction conditions in sol-gel transition of silicon alkoxide solution have been reviewed and discussed on the basis of Raman study. Various factors such as type of catalyst, alkoxide, solvent, drying control chemical additive and water content affect the conversion mechanism in sol-gel process.

  • PDF

Effect of Foliar and Root Application of Silicon Against Rice Blast Fungus in MR219 Rice Variety

  • Abed-Ashtiani, Farnaz;Kadir, Jugah-Bin;Selamat, Ahmad-Bin;Hanif, Ahmad Husni Bin-Mohd;Nasehi, Abbas
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.164-171
    • /
    • 2012
  • Rice blast disease caused by Magnaporthe grisea (Hebert) Barr [teleomorph] is one of the most devastating diseases in rice plantation areas. Silicon is considered as a useful element for a large variety of plants. Rice variety MR219 was grown in the glasshouse to investigate the function of silicon in conferring resistance against blast. Silica gel was applied to soil while sodium silicate was used as foliar spray at the rates of 0, 60, 120, 180 g/5 kg soil and 0, 1, 2, 3 ml/l respectively. The treatments were arranged in a completely randomized design. Disease severity and silicon content of leaves were compared between the non-amended controls and rice plants receiving the different rates and sources of silicon. Silicon at all rates of application significantly (${\alpha}$ = 0.05) reduced the severity of disease with highest reduction (75%) recorded in treatments receiving 120 g of silica gel. SEM/EDX observations demonstrated a significant difference in weight concentration of silicon in silica cells on the leaf epidermis between silicon treated (25.79%) and non treated plants (7.87%) indicating that Si-fertilization resulted in higher deposition of Si in silica cells in comparison with non-treated plants. Application of silicon also led to a significant increase in Si contents of leaves. Contrast procedures indicated higher efficiency of silica gel in comparison to sodium silicate in almost all parameters assessed. The results suggest that mitigated levels of disease were associated with silicification and fortification of leaf epidermal cells through silicon fertilization.

Adhesion Reliability Enhancement of Silicon/Epoxy/Polyimide Interfaces for Flexible Electronics

  • Kim, Sanwi;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.63-69
    • /
    • 2012
  • Adhesion and mechanical reliability of silicon/epoxy/polyimide interfaces are critical issues for flexible electronics. Bonds between these interfaces are mainly hydrogen bonds, so their adhesion is weaker than cohesive fracture toughness and vulnerable to moisture. In order to enhance adhesion and suppress moisture-assisted debonding, UV/Ozone treatment and innovative sol-gel derived hybrid layers were applied to silicon/epoxy/polyimide interfaces. The fracture energy and subcritical crack growth rate were measured by using a double cantilever beam (DCB) fracture mechanics test. Results showed that UV/Ozone treatment increased the adhesion, but was not effective for improving reliability against humidity. However, by applying sol-gel derived hybrid layers, adhesion increase as well as suppresion of moisture-assisted cracking were achieved.

Study on Sol-Gel Prepared Phosphosilicate Glass-Ceramic For Low Temperature Phosphorus Diffusion into Silicon

  • Kim, Young-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.32-36
    • /
    • 2001
  • A new solid source for low temperature diffusion into silicon was developed. The source wafer consists of an “active” compound, which is sol-gel prepared phosphosilicate glass-ceramics containing 56% P$_2$O$\sub$5/, embedded in a skeletal foam-like, inert substrate. Phosphorus diffusion from the new solid sources at low temperatures (800-875$^{\circ}C$) produced reprodecible sheet resistances and shallow junctions. From a series of one hour doping runs, the life time of the phosphosilicate source was determined to be over 40 hours. The effective diffusion coefficient of phosphorus into silicon and the corresponding activation energy at 850$^{\circ}C$ were determined to be 7.5${\times}$10$\^$-15/ $\textrm{cm}^2$/sec and ∼3.9 eV, respectively.

  • PDF

Fabrication of Silicon Nitride Ceramics by Gel-Casting and Microwave Gas Phase Reaction Sintering(II) : Microwave Nitridation of Silicon and Microwave Sintering of Silicon Nitride (Gel-Casting 및 마이크로파 기상반응소결에 의한 질화규소 세라믹 제조에 대한 연구(II) : 마이크로파에 의한 실리콘의 질화반응 및 질화규소의 소결)

  • Bai, Kang;Woo, Sang-Kuk;Han, In-Sub;Seo, Doo-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.354-359
    • /
    • 2011
  • Silicon nitride ceramics were prepared by microwave gas phase reaction sintering. By this method higher density specimens were obtained for short time and at low temperature, compared than ones by conventional pressureless sintering, even though sintering behaviors showed same trend, the relative density of sintered body inverse-exponentially increases with sintering temperature and/or holding time. And grain size of ${\beta}$-phase of the microwave sintered body is bigger than one of the conventional pressureless sintered one. Also they showed good bending strengths and thermal shock resistances.

Synthesis of SiC Nanoparticles by a Sol-Gel Process (나노 실리카와 카본블랙이용 탄화열 반응으로 나노 SiC 합성 및 특성)

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.246-249
    • /
    • 2013
  • Nano-sized ${\beta}$-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. $SiO_2$ nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. $SiO_2$ and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at $80^{\circ}C$ in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at $1400{\sim}1500^{\circ}C$ for 4 h with a heating rate of $10^{\circ}C$/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.