• 제목/요약/키워드: silicon fabrication

검색결과 1,118건 처리시간 0.025초

결정질 실리콘 태양전지의 스크린 프린팅 공정 최적화 연구 (Optimization of Screen Printing Process in Crystalline Silicon Solar Cell Fabrication)

  • 백태현;홍지화;최성진;임기조;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.116-120
    • /
    • 2011
  • In this paper, we studied the optimization of the screen pringting method for crystalline silicon solar cell fabrication. The 156 * 156 mm2 p-type silicon wafers with $200{\mu}m$ thickness and $0.5-3{\Omega}cm$ resistivity were used after texturing, doping, and passivation. Screen printing method is a common way to make the c-Si solar cell with low-cost and high-efficiency. We studied the optimized condition for screen printing with crystalline silicon solar cell as changing the printing direction (finger line or bus bar), finger width, and mesh angle. As a result, the screen printing with finger line direction showed higher finger height and better conversion efficiency, compared with one with bus bar direction. The experiments with various finger widths and mesh angles were also carried out. The characteristics of solar cells was obtained by measuring light current-voltage, optical microscope and electroluminescence.

  • PDF

관성 항법 장치급 서보 가속도계용 다단차 3차원 실리콘 미세 구조물 제작 (Fabrication of Multi-stepped Three Dimensional Silicon Microstructure for INS Grade Servo Accelerometer)

  • 이영주;이상훈;전국진;김용권;조동일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.425-427
    • /
    • 1996
  • New fabrication technique was developed to make three dimensional silicon microstructure with five fold vertical steps through entire wafer thickness. Each step is pre-defined on multiply stacked thermal oxide and silicon nitride (O/N) layers by photolithographies. Multi-stepped silicon microstructure is formed by anisotropic etch in aqueous KOH solution with the patterned nitride film as masking layer. Fabricated microstructure consists of four $16{\mu}m$ thick flexural spring beams, $290{\mu}m$ thick proof mass, mesas for overrange stop with $10{\mu}m$ height from the surface of the proof mass, and the other mesas and V grooves used for assembling this structure to the packaging frame of pendulous servo accelerometer. Using the numerical finite element method (FEM) simulator: ABAQUS, mechanical characteristics of the fabricated microstructure by the developed technique was compared with those of the same structure processed by one step silicon bulk etch followed by oxidation and patterning the etched region.

  • PDF

제지공장의 폐수처리에 사용되는 실리콘계 소포제의 제조 및 물성에 관한 연구 (A Study on the Properties and Preparation of Silicon-based Defoamer Used in the Purification of Wasted-Water Extruded in the Paper-Fabrication)

  • 최상구;이내택
    • 공업화학
    • /
    • 제16권5호
    • /
    • pp.614-619
    • /
    • 2005
  • 폴리올, 실리콘 수지, 변성 실리콘 수지 등을 유화제로 유화시켜 수용성 소포제를 제조하였다. 제조한 소포제에 대하여 소포성, 상분리 시간, 점도 등을 측정하였다. PPG 혼합물의 상분리 시간은 PPG 400>PPG 3000>PPG 1000이었다. PPG 1000을 혼합하였을 때는 다른 것에 비하여 뛰어난 소포성을 나타내었다. 실리콘 수지 혼합물의 상분리 시간은 TSF-451-350>TSF-451-200>TSF-451-50이었다. TSF-451-50을 혼합하였을 때는 상용성 부족으로 혼합물의 부피가 증가되었다. 고분자량의 실리콘 수지를 사용할수록 소포성은 좋지 않았다. 변성 실리콘 수지는 물에 잘 분산되었지만 폴리올에 대한 상용성은 좋지 않았다. 유화제에 대한 소포성은 SPAN 20>SPAN 60>SPAN 80의 순이었다. SPAN 80은 실리콘 수지에 대하여 혼합성이 좋지 않았지만 YAS 6406이나 PPG 1000에 대해서는 좋은 혼합성을 나타내었다.

Fabrication via Ultrasonication and Study of Silicon Nanoparticles

  • Kim, Jin Soo;Sohn, Honglae
    • 통합자연과학논문집
    • /
    • 제8권3호
    • /
    • pp.147-152
    • /
    • 2015
  • Photoluminescent porous silicon (PSi) were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 620 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon nanocrystal in porous silicon. As-prepared PSi was sonicated, fractured, and centrifuged in toluene to obtain photoluminescence silicon quantum dots. BET and BHJ methods were employed to study the specific surface area of as-prepared PSi. Optical characterization of red photoluminescent silicon nanocrystal was investigated by UV-vis and fluorescence spectrometer. Also SEM and TEM images of porous silicon and nanoparticles were investigated.

다층 기공구조를 갖는 다공성 반응소결 탄화규소 다공체 제조 (Fabrication of Porous Reaction Bonded Silicon Carbide with Multi-Layered Pore Structures)

  • 조경선;김규미;박상환
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.534-539
    • /
    • 2009
  • Reaction Bonded Silicon Carbide(RBSC) has been used for engineering ceramics due to low-temperature fabrication and near-net shape products with excellent structural properties such as thermal shock resistance, corrosion resistance and mechanical strength. Recently, attempts have been made to develop hot gas filter with gradient pore structure by RBSC to overcome weakness of commercial clay-bonded SiC filter such as low fracture toughness and low reliability. In this study a fabrication process of porous RBSC with multi-layer pore structure with gradient pore size was developed. The support layer of the RBSC with multi-layer pore structure was fabricated by conventional Si infiltration process. The intermediate and filter layers consisted of phenolic resin and fine SiC powder were prepared by dip-coating of the support RBSC in slurry of SiC and phenol resin. The temperature of $1550^{\circ}C$ to make Si left in RBSC support layer infiltrate into dip-coated layer to produce SiC by reacting with pyro-carbon from phenol resin.

실리콘 이종접합 태양전지 개발동향 (Recent Development of High-efficiency Silicon Heterojunction Technology Solar Cells)

  • 이아름;유진수;박성은;박주형;안승규;조준식
    • Current Photovoltaic Research
    • /
    • 제9권4호
    • /
    • pp.111-122
    • /
    • 2021
  • Silicon heterojunction technology (HJT) solar cells have received considerable attention due to advantages that include high efficiency over 26%, good performance in the real world environment, and easy application to bifacial power generation using symmetric device structure. Furthermore, ultra-highly efficient perovskite/c-Si tandem devices using the HJT bottom cells have been reported. In this paper, we discuss the unique feature of the HJT solar cells, the fabrication processes and the current status of technology development. We also investigate practical challenges and key technologies of the HJT solar cell manufacturers for reducing fabrication cost and increasing productivity.

AFM기반 기계적 TNL 패터닝을 통한 PDMS 몰드제작 (Fabrication of PDMS Mold by AFM Based Mechanical TNL Patterning)

  • 정윤준;박정우
    • 한국생산제조학회지
    • /
    • 제22권5호
    • /
    • pp.831-836
    • /
    • 2013
  • This study demonstrates the process of fabricating patterns using tribonanolithography (TNL),with laboratory-made micro polycrystalline diamond (PCD) tools that are attached to an atomic force microscope (AFM). The various patterns are easily fabricated using mechanical scratching, under various normal loads, using the PCD tool on single crystal silicon, which is the master mold for replication in this study. Then, polydimethylsiloxane (PDMS) replica molds are fabricated using precise pattern transfer processes. The transferred patterns show high dimensional accuracy as compared with those of TNL-processed silicon micro molds. TNL can reduce the need for high cost and complicated apparatuses required for conventional lithography methods. TNL shows great potential in that it allows for the rapid fabrication of duplicated patterns through simple mechanical micromachining on brittle sample surfaces.

Fabrication of silicon nano-ribbon and nano-FETs by using AFM anodic oxidation

  • 황민영;최창용;정지철;안정준;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.54-54
    • /
    • 2009
  • AFM anodic oxidation has the capability of patterning complex nano-patterns under relatively high speeds and low voltage. We report the fabrication using a atomic force microscopy (AFM) of silicon nano-ribbon and nano-field effect transistors (FETs). The fabricated nano-patterns have great potential characteristics in various fields due to their interesting electronic, optical and other profiles. The results shows that oxide width and the separation between the oxide patterns can be optimally controlled. The subsequently fabricated silicon nano-ribbon and nano-FET working devices were controled by various tip-sample bias-voltages and scan speed of AFM anodic oxidation. The results may be applied for highly integration circuits and sensitive optical sensor applications.

  • PDF

FIB 밀링을 이용한 나노스텐실 제작 및 나노패터닝 (Fabrication of nanostencil using FIB milling for nanopatterning)

  • 정성일;오현석;김규만
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.56-60
    • /
    • 2006
  • A high-resolution shadow mask, or called a nanostencil was fabricated for high resolution lithography. This high-resolution shadowmask was fabricated by a combination or MEMS processes and focused ion beam (FIB) milling. 500 nm thick and $2{\times}2mm$ large membranes wore made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. A subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to the high resolution of the FIB milling process, nanoscale apertures down to 70 nm could be made into the membrane. By local deposition through the apertures of nanostencil, nanoscale patterns down to 70 nm could be achieved.

Photolithographic Silicon Patterns with Z-DOL (perfluoropolyether, PFPE) Coating as Tribological Surfaces for Miniaturized Devices

  • Singh, R. Arvind;Pham, Duc-Cuong;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • 제9권1_2호
    • /
    • pp.10-12
    • /
    • 2008
  • Silicon micro-patterns were fabricated on Si (100) wafers using photolithography and DRIE (Deep Reactive Ion Etching) fabrication techniques. The patterned shapes included micro-pillars and micro-channels. After the fabrication of the patterns, the patterned surfaces were chemically modified by coating Z-DOL (perfluoropolyether, PFPE) thin films. The surfaces were then evaluated for their micro-friction behavior in comparison with those of bare Si (100) flat, Z-DOL coated Si (100) flat and uncoated Si patterns. Experimental results showed that the chemically treated (Z-DOL coated) patterned surfaces exhibited the lowest values of coefficient of friction when compared to the rest of the test materials. The results indicate that a combination of both the topographical and chemical modification is very effective in reducing the friction property. Combined surface treatments such as these could be useful for tribological applications in miniaturized devices such as Micro/Nano-Electro-Mechanical-Systems (MEMS/NEMS).