• 제목/요약/키워드: silicon fabrication

Search Result 1,118, Processing Time 0.026 seconds

Design and Fabrication of Electrostatic Inkjet Head using Silicon Micromachining Technology

  • Kim, Young-Min;Son, Sang-Uk;Choi, Jae-Yong;Byun, Do-Young;Lee, Suk-Han
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.121-127
    • /
    • 2008
  • This paper presents design and fabrication of optimized geometry structure of electrostatic inkjet head. In order to verify effect of geometry shape, we simulate electric field intensity according to the head structure. The electric field strength increases linearly with increasing height of the micro nozzle. As the nozzle diameter decreases, the electric field along the periphery of the meniscus can be more concentrated. We design and fabricate the electrostatic inkjet heads, hole type and pole type, with optimized structure. It was fabricated using thick-thermal oxidation and silicon micromachining technique such as the deep reactive ion etching (DRIE) and chemical wet etching process. It is verified experimentally that the use of the MEMS inkjet head allows a stable and sustainable micro-dripping mode of droplet ejection. A stable micro dripping mode of ejection is observed under the voltages 2.5 kV and droplet diameter is $10\;{\mu}m$.

Maskless Fabrication of the Silicon Stamper for PDMS Nano/Micro Channel (나노/마이크로 PDMS 채널 제작을 위한 마스크리스 실리콘 스템퍼 제작 및 레오로지 성형으로의 응용)

  • 윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.326-333
    • /
    • 2004
  • The nanoprobe based on lithography, mainly represented by SPM based technologies, has been recognized as a potential application to fabricate the surface nanosctructures because of its operational versatility and simplicity. However, nanoprobe based on lithography itself is not suitable for mass production because it is time a consuming method and not economical for commercial applications. One solution is to fabricate a mold that will be used for mass production processes such as nanoimprint, PDMS casting, and others. The objective of this study is to fabricate the silicon stamper for PDMS casting process by a mastless fabrication technique using the combination of nano/micro machining by Nanoindenter XP and KOH wet etching. Effect of the Berkovich tip alignment on the deformation was investigated. Grooves were machined on a silicon surface, which has native oxide on it, by constant load scratch (CLS), and they were etched in KOH solutions to investigate chemical characteristics of the machined silicon surface. After the etching process, the convex structures was made because of the etch mask effect of the mechanically affected layer generated by nanoscratch. On the basis of this fact, some line patterns with convex structures were fabricated. Achieved groove and convex structures were used as a stamper for PDMS casting process.

A Study on the Optical and Electrical Characteristics of Multi-Silicon Using Wet Texture (습식텍스쳐를 이용한 다결정 실리콘 광학적.전기적 특성 연구)

  • Han, Kyu-Min;Yoo, Jin-Su;Yoo, Kwon-Jong;Lee, Hi-Deok;Choi, Sung-Jin;Kwon, Jun-Young;Kim, Ki-Ho;YI, Jun-Sin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.383-387
    • /
    • 2009
  • Multi-crystalline silicon surface etching without grain-boundary delineation is a challenging task for the fabrication of high efficiency solar cell. The use of sodium hydroxide - sodium hypochlorite (NaOH40% + NaOCl 12%) solution for texturing multi-crystalline silicon wafer surface in solar cell fabrication line is reported in this article. in light current-voltage results, the cells etched in NaOH 40% + NaOCl 12% = 1:2 exhibited higher short circuit current and open circuit voltage than those of the cells etched in NaOH 40% + NaOCl 12% = 1:1 solution. we have obtained 15.19% conversion efficiency in large area(156cm2) multi-Si solar cells etched in NaOH 40% + NaOCl 12% = 1:1 solution.

  • PDF

A Study on Capacitance Enhancement by Hemispherical Grain Silicon and Process Condition Properties (Hemispherical Grain Silicon에 의한 정전용량 확보 및 공정조건 특성에 관한 연구)

  • 정양희;정재영;이승희;강성준;이보희;유일현;최남섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.4
    • /
    • pp.809-815
    • /
    • 2000
  • The box capacitor structure with HSG-Si described here reliably achieves a cell capacitance of 28fF with a cell area of a $0.4820\mum^2$ for 128Mbit DRAM. An HSG-Si formation technology with seeding method, which employs Si2H6 molecule irradiation and annealing, was applied for realizing 64Mbit and larger DRAMS. By using this technique, grain size controlled HSG-Si can be fabricated on in-situ phosphorous doped amorphous silicon electrodes. The HSG-Si fabrication technology achieves twice the storage capacitance with high reliability for the stacked capacitors.The box capacitor structure with HSG-Si described here reliably achieves a cell capacitance of 28fF with a cell area of a $0.4820\mum^2$ for 128Mbit DRAM. An HSG-Si formation technology with seeding method, which employs Si2H6 molecule irradiation and annealing, was applied for realizing 64Mbit and larger DRAMS. By using this technique, grain size controlled HSG-Si can be fabricated on in-situ phosphorous doped amorphous silicon electrodes. The HSG-Si fabrication technology achieves twice the storage capacitance with high reliability for the stacked capacitors.

  • PDF

A Study of Micro Freestanding Structure Fabrication using Nickel Electroless Plating And Silicon Anisotropic Etching (무전해 니켈 도금과 실리콘의 이방성 식각을 이용한 미세 가동 구조물의 제작방법에 관한 연구)

  • Kim, Seong-Hyok;Kim, Yong-Kweon;Lee, Jae-Ho;Huh, Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.6
    • /
    • pp.367-374
    • /
    • 2000
  • This paper presents a method to fabricate freestanding structures by (100) silicon anisotropic etching and nickel electroless plating. The electroless plating process is simpler than the electroplating, and provides good coating uniformity and improved mechanical properties. Furthermore, the (100) silicon anisotropic etching in KOH solution with being aligned to <100> direction provides vertical (100) sidewalls on etched (100) surface. In this paper, the effects of the nickel electroless plating condition on the properties of electroless plated metal structures are investigated to apply fabrication of micro structures and then various micro structures are fabricated by nickel electroless plating. And then, the structures are released by silicon anisotropic etching in KOH solution with a large gap between the structure and the substrate. The fabricated cantilever structures are $210\mum$. wide, $5\mum$. thick and $15\mum$. over the silicon substrate, and the comb structure has the comb electrodes which are $4\mum$. wide and $4.3\mum$. thick separated by$1\mum$. It is released by silicon anisotropic etching in KOH solution. The gap between the structure and the substrate is $2.5\mum$.

  • PDF

A Silicon Micromachined Fluidic Amplifier and Performance Analysis with Computational Fluid Dynamics (실리콘 마이크로머시닝을 이용한 유체증폭기의 제작과 수치해석을 이용한 해석)

  • Kim, Tae-Hyun;Cho, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1963-1967
    • /
    • 1996
  • This paper describes the analysis, design, and silicon-fabrication of a fluidic proportional amplifier, which is the most important element of fluidic logic circuits. First, FEM(finite element method) analyses were performed, using the Fluent computational fluid dynamics program, and design geometries were optimized. Then, a $40\;{\mu}m$-deep amplifier was fabricated in silicon using anisotropic dry etching.

  • PDF

Polymer master fabrication for antireflection using low-temperature AAO process (저온 양극산화공정을 이용한 반사 방지용 폴리머 마스터 제작)

  • Shin, Hong-Gue;Kwon, Jong-Tae;Seo, Young-Ho;Kim, Byeong-Hee;Park, Chang-Min;Lee, Jae-Suk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1825-1828
    • /
    • 2008
  • A simple method for the fabrication of porous nano-master for antireflective surface is presented. In conventional fabrication methods for antireflective surface, coating method with low refractive index has usually been used. However, it is required to have high cost and long times for mass production. In this paper, we suggested the fabrication method of antireflective surface by the hot embossing process using the porous nano patterned master on silicon wafer fabricated by low-temperature anodic aluminum oxidation. Through multi-AAO and etching processes, nano patterned master with high aspect ratio was fabricated at the large area. Pore diameter and inter-pore distance are about 150nm and from 150 to 200nm. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF

Review of Hazardous Agent Level in Wafer Fabrication Operation Focusing on Exposure to Chemicals and Radiation (반도체 산업의 웨이퍼 가공 공정 유해인자 고찰과 활용 - 화학물질과 방사선 노출을 중심으로 -)

  • Park, Donguk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Objectives: The aim of this study is to review the results of exposure to chemicals and to extremely low frequency(ELF) magnetic fields generated in wafer fabrication operations in the semiconductor industry. Methods: Exposure assessment studies of silicon wafer fab operations in the semiconductor industry were collected through an extensive literature review of articles reported until the end of 2015. The key words used in the literature search were "semiconductor industry", "wafer fab", "silicon wafer", and "clean room," both singly and in combination. Literature reporting on airborne chemicals and extremely low frequency(ELF) magnetic fields were collected and reviewed. Results and Conclusions: Major airborne hazardous agents assessed were several organic solvents and ethylene glycol ethers from Photolithography, arsenic from ion implantation and extremely low frequency magnetic fields from the overall fabrication processes. Most exposures to chemicals reported were found to be far below permissible exposure limits(PEL) (10% < PEL). Most of these results were from operators who handled processes in a well-controlled environment. In conclusion, we found a lack of results on exposure to hazardous agents, including chemicals and radiation, which are insufficient for use in the estimation of past exposure. The results we reviewed should be applied with great caution to associate chronic health effects.

Fabrication of silicon field emitter array using chemical-mechanical-polishing process (기계-화학적 연마 공정을 이용한 실리콘 전계방출 어레이의 제작)

  • 이진호;송윤호;강승열;이상윤;조경의
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.88-93
    • /
    • 1998
  • The fabrication process and emission characteristics of gated silicon field emitter arrays(FEAs) using chemical-mechanical-polishing (CMP) method are described. Novel fabrication techniques consisting of two-step dry etching with oxidation of silicon and CMP processes were developed for the formation of sharp tips and clear-cut edged gate electrodes, respectively. The gate height and aperture could be easily controlled by varying the polishing time and pressure in the CMP process. We obtained silicon FEAs having self-aligned and clear-cut edged gate electrode opening by eliminating the dishing problem during the CMP process with an oxide mask layer. The tip height of the finally fabricated FEAs was about 1.1 $\mu$m and the end radius of the tips was smaller than 100 $\AA$. The emission current meaured from the fabricated 2809 tips array was about 31 $\mu$A at a gate voltage of 80 V.

  • PDF

Fabrication and Characterization of Silicon Probe Tip for Vertical Probe Card Using MEMS Technology

  • Kim, Young-Min;Yu, In-Sik;Lee, Jong-Hyun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.149-154
    • /
    • 2004
  • This paper presents a silicon probe tip for vertical probe card application. The silicon probe tip was fabricated using MEMS technology such as porous silicon micromachining and deep- RIE (reactive ion etching). The thickness of the silicon epitaxial layers was 5 ${\mu}{\textrm}{m}$ and 7 ${\mu}{\textrm}{m}$, respectively. The width and length were 40 ${\mu}{\textrm}{m}$ and 600 ${\mu}{\textrm}{m}$, respectively. The probe structure was a multilayered structure and was composed of Au/Ni-Cr/Si$_3$N$_4$/n-epi layers. The height of the curled probe tip was measured as a function of the annealing temperature and time. Resistance characteristics of the probe tip were measured using a touchdown test.