• Title/Summary/Keyword: silicon carbide powder

Search Result 106, Processing Time 0.059 seconds

Microstructure and mechanical properties in hot-forged liquid-phase-sintered silicon carbide (고온단조에 의한 액상소결 탄화규소의 미세구조 및 기계적 특성)

  • Roh, Myong-Hoon;Kim, Won-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.1943-1948
    • /
    • 2010
  • Two kind of $\beta$-SiC powders of different particle sizes (${\sim}1.7\;{\mu}m$ and ${\sim}30\;nm$), containing 7 wt% $Y_2O_3$, 2 wt% $Al_2O_3$ and 1 wt% MgO as sintering additives, were prepared by hot pressing at $1800^{\circ}C$ for 1 h under applied pressures, and then were hot-forged at $1950^{\circ}C$ for 6 h under 40 MPa in argon. All the hot-pressed specimens consisted of equiaxed grains and were developed grain growth after hot-forging. The smaller starting powder was developed the finer microstructure. The microstructures on the surfaces parallel and perpendicular to the pressing direction of the hot-forged SiC were similar to each other, and no texture development was observed because of the lack of massive $\beta$ to $\sigma$ phase transformation of SiC. The fracture toughness (${\sim}3.9\;MPa{\cdot}m^{1/2}$), hardness (~ 25.2 GPa) and flexural strength (480 MPa) of hot-forged SiC using larger starting powder were higher than those of the other.

Synthesis of SiC from the Wire Cutting Slurry of Silicon Wafer and Graphite Rod of Spent Zinc-Carbon Battery (폐 반도체 슬러리 및 폐 망간전지 흑연봉으로부터 탄화규소 합성)

  • Sohn Yong-Un;Chung In-Wha;Sohn Jeong-Soo;Kim Byoung-Gyu
    • Resources Recycling
    • /
    • v.12 no.3
    • /
    • pp.25-30
    • /
    • 2003
  • The synthesis of SiC used for the parts of the gas turbine and the heat exchanger, was carried out. In this study, wire cutting slurry of silicon wafer and the graphite rod of spent zinc-carbon battery were applied to the starting materials for the synthesis. The powders of Si or Si+SiC were obtained from the waste material by filtration, gravity separation and magnetic separation. Graphite powder was produced by dismantling, grinding and gravity separation from spent zinc-carbon battery. The synthesis of SiC could be completed from the mixture powders of Si and C or Si+SiC and C at the condition of equivalent ratio of Si and C, atmosphere of Ar or vacuum, temperature of above 1$600^{\circ}C$ and 2 hours reactions. The purity of synthesized Si-C was above 99%.

Characterization of SiC nanowire synthesize by Thermal CVD

  • Jeong, Min-Uk;Kim, Min-Guk;Song, U-Seok;Jeong, Dae-Seong;Choe, Won-Cheol;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.74-74
    • /
    • 2010
  • One-dimensional nanosturctures such as nanowires and nanotube have been mainly proposed as important components of nano-electronic devices and are expected to play an integral part in design and construction of these devices. Silicon carbide(SiC) is one of a promising wide bandgap semiconductor that exhibits extraordinary properties, such as higher thermal conductivity, mechanical and chemical stability than silicon. Therefore, the synthesis of SiC-based nanowires(NWs) open a possibility for developing a potential application in nano-electronic devices which have to work under harsh environment. In this study, one-dimensional nanowires(NWs) of cubic phase silicon carbide($\beta$-SiC) were efficiently produced by thermal chemical vapor deposition(T-CVD) synthesis of mixtures containing Si powders and hydrocarbon in a alumina boat about $T\;=\;1400^{\circ}C$ SEM images are shown that the temperature below $1300^{\circ}C$ is not enough to synthesis the SiC NWs due to insufficient thermal energy for melting of Si Powder and decomposition of methane gas. However, the SiC NWs are produced over $1300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is about $1400^{\circ}C$ with an average diameter range between 50 ~ 150 nm. Raman spectra revealed the crystal form of the synthesized SiC NWs is a cubic phase. Two distinct peaks at 795 and $970\;cm^{-1}$ over $1400^{\circ}C$ represent the TO and LO mode of the bulk $\beta$-SiC, respectively. In XRD spectra, this result was also verified with the strongest (111) peaks at $2{\theta}=35.7^{\circ}$, which is very close to (111) plane peak position of 3C-SiC over $1400 ^{\circ}C$ TEM images are represented to two typical $\beta$-SiC NWs structures. One is shown the defect-free $\beta$-SiC nanowire with a (111) interplane distance with 0.25 nm, and the other is the stacking-faulted $\beta$-SiC nanowire. Two SiC nanowires are covered with $SiO_2$ layer with a thickness of less 2 nm. Moreover, by changing the flow rate of methane gas, the 300 sccm is the optimal condition for synthesis of a large amount of $\beta$-SiC NWs.

  • PDF

Semi-Insulating SiC Single Crystals Grown with Purity Levels in SiC Source Materials (고순도 SiC 파우더를 이용한 반절연 SiC 단결정 성장)

  • Lee, Chae Young;Choi, Jeong Min;Kim, Dae Sung;Park, Mi Seon;Jang, Yeon Suk;Lee, Won Jae;Yang, In Seok;Kim, Tae Hee;Chen, Xiufang;Xu, Xiangang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.100-103
    • /
    • 2019
  • The change in vanadium amount according to the growth direction of vanadium-doped semi-insulated (SI) SiC single crystals using high-purity SiC powder was investigated. High-purity SiC powder and a porous graphite (PG) inner crucible were placed on opposite sides of SiC seed crystals. SI SiC crystals were grown on 2 inch 6H-SiC Si-face seeds at a temperature of $2,300^{\circ}C$ and growth pressure of 10~30 mbar of argon atmosphere, using the physical vapor transport (PVT) method. The sliced SiC single crystals were polished using diamond slurry. We analyzed the polytype and quality of the SiC crystals using high-resolution X-ray diffraction (XRD) and Raman spectroscopy. The resistivity of the SI SiC crystals was analyzed using contactless resistivity mapping (COREMA) measurements.

Liquid-Phase Sintered SiC Ceramics with Oxynitride Additives

  • Rixecker, G.;Biswas, K.;Wiedmann, I.;Sldinger, F.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.1-33
    • /
    • 2000
  • Silicon carbide ceramics with sintering additives from the system AlN-Y$_2$O$_3$ can be gas-pressure sintered to theoretical density. While commonly a combination of sesquioxides is used such as Al$_2$O$_3$-Y$_2$O$_3$, the oxynitrid additives offer the advantage that only a nitrogen atmosphere is require instead of a powder. By starting form a mixture of ${\beta}$-SiC and ${\alpha}$-SiC, and by performing dedicated heat treatments after densification, anisotropic grain growth is obtained which leads to a platelet microstructure showing enhance fracture toughness. In the present work, recent improvement of the mechanical behaviour of these materials at ambient and high temperatures is reported. By means of a surface oxidation treatment in air it is possible to obtain four-point bending strengths in excess of 1 GPa, and the strength retention at high temperatures is significantly improved.

  • PDF

Effects of Pressure on Properties of SiC-$ZrB_2$ Composites through SPS (SPS법에 의한 SiC-$ZrB_2$ 복합체의 특성에 미치는 압력의 영향)

  • Shin, Yong-Deok;Lee, Jung-Hoon;Kim, Chul-Ho;Jin, Beom-Soo;Wu, Na
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1449-1450
    • /
    • 2011
  • The SiC-$ZrB_2$ composites were produced by subjecting a 40:60 (vol.%) mixture of zirconium diboride($ZrB_2$) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering(SPS) under argon atmosphere at 50MPa(P50) and 60MPa(P60) pressure. The relative density, 94.13% of P60 sample was lower than that, 94.75% of P50 sample. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed via x-ray diffraction (hereafter, XRD) analysis. The trend of flexural strength of SiC-$ZrB_2$ composites were in accordance with the relative density. The properties of a SiC-$ZrB_2$ composites through SPS under argon atmosphere were positive temperature coefficient resistance in the temperature range from $25^{\circ}C$ to $500^{\circ}C$, and electrical resistivity of P50 and P60 sample were $6.75{\times}10^{-4}$ and $7.22{\times}10^{-4}{\Omega}{\cdot}cm$ at room temperature, respectively.

  • PDF

Effect of Al2O3 Addition on SF6 Decomposition by Microwave Irradiation (마이크로파 조사에 의한 SF6 분해시 Al2O3 첨가의 영향)

  • Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • Silicon carbide with aluminium oxide was used to remove the sulphur hexafluoride ($SF_6$) gas using microwave irradiation. The destruction and removal efficiencies (DREs) of $SF_6$ were studies as a function of various decomposition temperatures and microwave powers. The decomposition of $SF_6$ gas was analyzed using GC-TCD. XRD (X-ray powder diffraction) and XRF (X-ray Fluorescence Spectrometer) were used to characterize the properties of aluminum oxide. DREs of $SF_6$ were increased as the microwave powers were increased. Additive aluminium oxide on SiC increased the removal efficiencies and decreased the decomposition temperature. The XRD results show that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ during $SF_6$ decomposition by microwave irradiation. It was found that the best material to control $SF_6$ was SiC with $Al_2O_3$ 30 wt% in consideration of microwave energy consumption and $SF_6$ decomposition rate.

Prevention of Grain Growth during the Liquid-Phase Assisted Sintering of β-SiC (액상소결 시의 β-SiC의 입자성장 방지)

  • Gil, Gun-Young;Noviyanto, Alfian;Han, Young-Hwan;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.485-490
    • /
    • 2010
  • In our previous studies, continuous SiC fiber-reinforced SiC-matrix composites ($SiC_f$/SiC) had been fabricated by two different slurry infiltration methods: vacuum infiltration and electrophoretic deposition (EPD). 12 wt% of $Al_2O_3-Y_2O_3$-MgO with respect to SiC powder was used as additives for liquid-phase assisted sintering. After hot pressing at $1750^{\circ}C$ under 20 MPa for 2 h in Ar atmosphere, a high composite density could be achieved for both cases, whereas the problems such as large grain size and non-uniform distribution of liquid phase were observed, which was resulted in the relatively poor mechanical properties of composites. Therefore, efforts have been made to reduce the grain growth during the sintering, including the optimization for hot pressing condition and utilization of spark plasma sintering using a SiC monolith. Based on the results, spark plasma sintering was found to be effective method in decreasing the amount of sintering additive, time and grain growth, which will be explained in comparison to the results of hot pressing in this paper.

A Study on Magnetic Abrasive Using Sr-Ferrite (Sr-Ferrite를 이용한 자기 연마재에 관한 연구)

  • Kim, Hee-Nam;Kim, Dong-Wook
    • Journal of the Speleological Society of Korea
    • /
    • no.79
    • /
    • pp.77-81
    • /
    • 2007
  • In this paper deals with behavior of the magnetic abrasive using Sr-Ferrite on polishing charateristiccs in a internal finishing of staninless steel pipe a tying magnetic abrasive polishing. The magnetic polishing is the useful method to finish some machinery fabrications by using magnetic power. This method is one of the precision techniques and has in aim for clean technology in the transportation of the pure gas in the clean pipes. The magnetic abrasive polishing method is not so common in the field of machine that it is not known to widely. There are rarely researcher in this field because of non-effectiveness of magnetic abrasive. Therefore, in this paper we deals with the development of the magnetic abrasive with the use of Sr-Ferrite. In this development, abrasive grain SiC has been made by using the resin bond fabricated at low temperature. And magnetic abrasive powder was fabricated from the Sr-Ferrite which was crushed into 200 mesh. The XRD analysis result shows that only SiC abrasive and Sr-Ferrite crystal peaks were detected, explaining that resin bond was not any more to contribute chemical reaction. From MACRO analysis, we found that SiC abrasive and Sr-Ferrite were strongly bonding with each other.

Fabrication and High-temerature Mechanical Property of Liquid-Phase-Sintered SiC (액상소결 탄화규소 세라믹스의 제조 및 고온기계적 특성)

  • Lee, Moonhee;Kim, Sungwon;Lee, Jongho;Hwang, SeungKuk;Gwak, Jaehwan;Lee, Jinkyung;Lee, Sangpill
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.669-674
    • /
    • 2020
  • Liquid-phase-sintered (LPS) SiC materials were briefly examined with their microstructure and mechanical property. Especially, effect of high-temperature exposure on the tendency of fracture toughness of LPS-SiC were introduced. The LPS-SiC was fabricated in hot-press by sintering powder mixture of sub-micron SiC and sintering additives of Al2O3-Y2O3. LPS-SiC represented dense morphology and SiC grain-growth with some amount of micro-pores and clustered additives as pore-filling. The strength of LPS-SiC might affected by distribution of micro-pores. LPS-SiC tended to decrease fracture toughness depending on increasing exposure temperature and time.