• Title/Summary/Keyword: silicon carbide fiber

Search Result 66, Processing Time 0.02 seconds

Effect of Specific Surface Area on the Reaction of Silicon Monoxide with Porous Carbon Fiber Composites

  • Park, Min-Jin;Lee, Jae-Chun
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.245-248
    • /
    • 1998
  • Porous carbon fiber composites (CFCs) having variable specific surface area ranging 35~1150 $\m^2$/g were reacted to produce silicon carbide fiber composites with SiO vapor generated from a mixture of Si and $SiO_2$ at 1673 K for 2 h under vacuum. Part of SiO vapor generated during conversion process condensed on to the converted fiber surface as amorphous silica. Chemical analysis of the converted CFCs resulting from reaction showed that the products contained 27~90% silicon carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific surface area of CFCs. CFC of higher specific surface area yielded higher degree of conversion of carbon to silicon and conversion products of lower mechanical strength due to occurrence of cracks in the converted caron fiber. As the conversion of carbon to silicon carbide proceeded, pore size of converted CFCs increased as a result of growth of silicon carbide crystallites, which is also linked to the crack formation in the converted fiber.

  • PDF

Properties of Silicon Carbide-Carbon Fiber Composites Prepared by Infiltrating Porous Carbon Fiber Composites with Liquid Silicon

  • Lee, Jae-Chun;Park, Min-Jin;Shin, Kyung-Sook;Lee, Jun-Seok;Kim, Byung-Gyun
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.229-234
    • /
    • 1997
  • Silicon carbide-carbon fiber composites have been prepared by partially Infiltrating porous carbon fiber composites with liquid silicon at a reaction temperature of $1670^{\circ}C$. Reaction between molten silicon and the fiber preform yielded silicon carbide-carbon fiber composites composed of aggregates of loosely bonded SiC crystallites of about 10$\mu\textrm{m}$ in size and preserved the appearance of a fiber. In addition, the SiC/C fiber composites had carbon fibers coated with a dense layer consisted of SiC particles of sizes smaller than 1$\mu\textrm{m}$. The physical and mechanical properties of SiC/C fiber composites were discussed in terms of infiltrated pore volume fraction of carbon preform occupied by liquid silicon at the beginning of reaction. Lower bending strength of the SiC/C fiber composites which had a heterogeneous structure in nature, was attributed to the disruption of geometric configuration of the original carbon fiber preform and the formation of the fibrous aggregates of the loosely bonded coarse SiC particles produced by solution-precipitation mechanism.

  • PDF

Research of the Composite Spun Yarn Manufacturing Process using Silicon Carbide and Para Aramid Fiber (SiC/p-Aramid 복합방적사 제조기술 연구)

  • Kim, Booksung;Ryu, Huijun
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.309-316
    • /
    • 2021
  • Due to the rigid nature of the silicon carbide fiber(SiC), fiber damage occurs from the friction during the carding process. This damage not only lowers the spun yarn yield, but also lowers the heat resistance of the spun yarn, so that ultra-high heat resistant yarn cannot be manufactured. Therefore, in the carding process where the most friction between fiber and machine(wire, etc.) occurs, some factors were modified and tested, and as a result of measuring the change in physical properties, fiber damage decreased due to the wire angle or wire density, resulting in improved yield. The test method used to measure the yield of SiC fiber was the carbonization method, and the content of SiC fibers was calculated using the remaining amount after carbonization. Carbonization test was performed at air condition, 700℃, and for 2 hours. Analysis by SEM-EDX showed that the carbide was consistent with the composition of the SiC fiber.

Conversion of Carbon Fiber into Silicon Carbide Fiber by Pack-Cementation

  • Joo, Hyeok-Jong;Kim, Jung-Il;Lee, Jum-Kyun
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.12-16
    • /
    • 2000
  • Carbon fiber was reacted with gaseous silicon monoxide which is produced from pack-powder mixture at elevated temperature. As a result of the reaction, two kinds of SiC fiber were obtained. The first one was SiC fibers which were converted from carbon fiber. The fiber is constituted with polycrystal like fine grains or monolithic crystals that have a size from sub-micron to $10\;{\mu}m$. Their size depends on the temperature during the conversion reaction. The second one was ultra-fine SiC fibers that were found on the surface of the converted SiC fibers. The ultra-fine fibers have diameters from 0.08 to $0.2\;{\mu}m$ and their aspect ratio were larger than 100. The chemical composit ion of the ultra-fine fibers was analyzed using an Auger electron spectroscopy. In result, the fibers consist of 51% silicon, 38% carbon and 11% oxygen by weight.

  • PDF

Evaluation of the Influence of Pyrolysis Temperature on the Electrical Heating Properties of Si-O-C Fiber

  • Sanghun Kim;Seong-Gun Bae;Bum-Mo Koo;Dong-Geun Shin;Yeong-Geun Jeong
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.330-336
    • /
    • 2024
  • Silicon carbide (SiC) fibers exhibit excellent heat and chemical resistance at high temperatures. In this study, polycarbosilane melt spinning, oxidation curing, and pyrolysis were performed to fabricate amorphous SiC fibers, and their resistance heating characteristics were evaluated. A stick-type amorphous silicon carbide fiber heating element was manufactured, and the resistance was measured using the two-point probe method. The structural, electrical, and heating characteristics were evaluated at different pyrolysis temperatures. The fiber produced at 1300℃ displayed the highest conductivity and the maximum heating compared to the fibers produced at 1200℃ and 1400℃. This may be attributed to difference in the structures of the fibers, particularly the SiC and graphitic carbon structures.

Mechanical Behavior of Indentation Stress in Carbon Fiber Reinforced Silicon Carbide Composites with Different Densities (서로 다른 밀도를 갖는 탄소섬유강화 탄화규소 복합재료의 압흔응력에 의한 기계적 거동)

  • Lee, Kee-Sung;Kim, Il-Kyum;Kim, Tae-Woo;Kim, Se-Young;Han, In-Sub;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.288-292
    • /
    • 2011
  • In this study, we investigated the mechanical behavior of carbon fiber reinforced silicon carbide composites by indentation stress. Relatively porous and dense fiber reinforced ceramic composites were fabricated by liquid silicon infiltration (LSI) process. Densification of fiber composite was controlled by hardening temperature of preform and consecutive LSI process. Load-displacement curves were obtained during indentation of WC sphere on the carbon fiber reinforced silicon carbide composites. The indentation damages at various loads were observed, and the elastic modulus were predicted from unloading curve of load-displacement curve.

Performance of Modified-Silicon Carbide Fiber Composites Membrane for Polymer Exchange Membrane Fuel Cells (표면처리된 실리콘 카바이드 섬유 복합막의 고분자 전해질 막 연료전지 성능)

  • Park, Jeong Ho;Kim, Taeeon;Juon, Some;Cho, Yongil;Cho, Kwangyeon;Shul, Yonggun
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.1
    • /
    • pp.28-38
    • /
    • 2014
  • The organic-inorganic composite membrane in polymer exchange membrane fuel cells (PEMFCs) have several fascinating technological advantages such as a proton conductivity, thermal stability and mechanical properties. As the inorganic filler, silicon carbide (SiC) fiber have been used in various fields due to its unique properties such as thermal stability, conductivity, and tensile strength. In this study, composite membrane was successfully fabricated by modified-silicon carbide fiber. Modified process, as a novel process in SiC, takes reaction by phosphoric acid after oxidation process (generated homogeniusly $SiO_2$ layer on SiC fiber). The mechanical property which was conducted by tensile test of the 5wt% modified-$SiO_2@SiCf$ composite membrane was better than that of Aquivion casting membrane as well as ion cxchange capacity(IEC) and proton conductivity. In addition, the single cell performance was observed that the 5wt% modified-$SiO_2@SiCf$ composite membrane was approximately $0.2A/cm^2$ higher than that of a Aquivion casting electrolyte membrane and electrochemical impedance was improved with the charge transfer resistance and membrane resistance.

Preparation of Silicon Carbide Ceramic Thick Films by Liquid Process (액상공정을 이용한 탄화규소 세라믹 후막의 제조)

  • Kim, Haeng-Man;Kim, Jun-Su;Lee, Hong-Rim;Ahn, Young-Cheol;Yun, Jon-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.95-99
    • /
    • 2012
  • Silicon carbide ceramics are used for oxidation resistive coating films due to their excellent properties like high strength, good oxidation resistance, and good abrasion resistance, but they have poor formability and are prepared by vapor process which is complicated, costly, and sometimes hazardous. In this study, preparation of silicon carbide coating film by liquid process using polymer precursor was attempted. Coating film was prepared by dip coating on substrate followed by heat treatment in argon at $1200^{\circ}C$. By changing the dipping speed, the thickness was controlled. The effects of plasticizer, binder, or fiber addition on suppression of crack generation in the polymer and ceramic films were examined. It was found that fiber additives was effective for suppressing crack generation.