• 제목/요약/키워드: silicas

검색결과 51건 처리시간 0.04초

나노 메조포러스 흡착제를 이용한 중금속 흡착에 관한 연구 (A Study for Heavy Metals Adsorption by Nano-mesoporous Adsorbents)

  • 박상원
    • 한국환경과학회지
    • /
    • 제16권6호
    • /
    • pp.689-698
    • /
    • 2007
  • Mesoporous silicas for heavy metals adsorption were prepared by co-condensation of surfactant as a template and Ludox HS-40 as a silica precursor. Various mesoporous silicas with the introduction of chelating ligands (mercaptopropyl and aminopropyl groups) were synthesized to remove heavy metal ions from aqueous solutions. The surface modification was conducted with a co-condensation process using the sequential or simultaneous addition of mesoporous silica and high concentration of the organosilane(3-mercaptopropyltrimethoxysilane and 3-aminopropyltriethoxysilane). These materials have been characterized by elemental analysis, XRD, SEM and TEM analysis. Adsorbents synthesized with 3-mercaptopropyltrimethoxysilane and 3-aminopropyltriethoxysilane shows a high loading capacity for Hg(II), Pb(II), Cd(II) and anion Cr(VI). Especially the one synthesized with a mercaptopropyl function has the highest adsorption capacity for Hg(II) and Cd(II).

Effect of Mixing Ratio of Spherical Silica on the Electrical Insulation Breakdown Strength in Epoxy Composites

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권2호
    • /
    • pp.101-104
    • /
    • 2013
  • The effect of the mixing ratio of spherical silica on the electrical insulation breakdown strength in an epoxy/silica composite was studied. Spherical silicas with two average particle sizes of $5{\mu}m$ and $20{\mu}m$ were mixed in different mixing ratios, and their total filling content was fixed at 60 wt%. In order to observe the dispersion of the silicas and the interfacial morphology between silica and epoxy matrix, scanning electron microscopy (SEM) was used. The electrical insulation breakdown strength was estimated in sphere-sphere electrodes with different insulation thicknesses of 1, 2, and 3 mm. Electrical insulation breakdown strength decreased with increasing mixing ratio of $5/20{\mu}m$ and the thickness dependence of the breakdown strength was also observed.

Reinforcing Performance of Networked Silicas in Silica-filled Chloroprene Rubber Compounds

  • Ryu, Changseok;Yang, Jae-Kyoung;Park, Wonhyeong;Kim, Sun Jung;Kim, Doil;Seo, Gon;Kim, Wook-Soo;Ahn, Ki Woong;Kim, Beak Hwan
    • Elastomers and Composites
    • /
    • 제54권1호
    • /
    • pp.40-53
    • /
    • 2019
  • The physical properties of chloroprene rubber (CR) compounds reinforced with networked silicas were investigated by comparing them to those reinforced with conventional silica to observe the effect of the organic connection bonds combining silica particles on their cure, tensile, and aging performance. The introduction of networked silica to CR increase in silica content to 80 phr in rubber, while the content of conventional silica was limited to 60 phr. The CR compounds reinforced with networked silica showed higher resistance to combustion. The gradual increases in delta torque, Mooney viscosity, and modulus of silica-filled CR compounds with silica content were mainly attributed to the specific interaction between the chlorine atoms of CR and the hydroxyl groups of silica. The CR compounds reinforced with networked silica showed low compression set and heat build-up and maintained their high modulus even after thermal, oil, and ozone aging.

EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions

  • Ravi, Seenu;Zhang, Siqian;Lee, Yu-Ri;Kang, Kyoung-Ku;Kim, Ji-Man;Ahn, Ji-Whan;Ahn, Wha-Seung
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.210-218
    • /
    • 2018
  • Ethylenediaminetetraacetic acid (EDTA)-functionalized KIT-6 and KCC-1 mesoporous silicas were prepared via post-synthesis grafting and examined for their ability to promote the recovery of rare earth metal ions such as $Nd^{3+}$ from an aqueous medium. The obtained adsorption isotherms were fitted to the Langmuir model, which gave a maximum adsorption of $Nd^{3+}$ ions of 109.8 and 96.5 mg/g for KIT-6-EDTA and KCC-1-EDTA, respectively, at $25^{\circ}C$ and pH 6. The adsorption kinetic profile of KIT-6 was faster than KCC-1. KIT-6 was also proved to be more stable against desorption under acidic regeneration conditions.

충전제-탄성체 상호작용. 8. 불소 처리한 나노크기의 실리카가 폴리우레탄 기지 복합재료의 기계적 계면특성 및 열안정성에 미치는 영향 (Filler-Elastomer Interactions. 8. Influence of Fluorinated Nanoscaled Silicas on Mechanical Interfacial Properties and Thermal Stabilities of Polyurethane Matrix Composites)

  • 박수진;조기숙
    • 폴리머
    • /
    • 제27권2호
    • /
    • pp.91-97
    • /
    • 2003
  • 각기 다른 온도에서 불소화 표면처리에 의한 실리카의 표면특성을 X-선 광전 분광법 그리고 접촉각을 통해 관찰하였으며, 복합재료의 기계적 계면물성과 열안정성에 미치는 영향은 인열 에너지와 분해 활성화 에너지를 통해 고찰하였다. 실리카 표면 자유 에너지의 London 비극성 요소와 불소작용기는 불소화 처리 온도에 따라 증가하였으며, 결과적으로 실리카/폴리우레탄 복합재료의 인열 에너지를 향상시켰다. 또한 복합재료의 열안정성은 불소화 함량에 따라 증가하였다. 이러한 결과는 실리카 표면에 도입된 불소작용기가 본 실험의 복합재료 시스템 내에서 실리카와 폴리우레탄 계면 사이의 분자간 상호작용을 향상시키는 주요한 인자로 작용한 것으로 사료된다.

메조다공성 유기-실리카를 이용한 구리(II)의 예비농축과 불꽃원자 흡수분광법으로의 정량 (Preconcentration of Copper(II) Using Mesoporous Organo-Silicas and Determination by Flame Atomic Absorption Spectrometry)

  • Moghimi, Ali
    • 대한화학회지
    • /
    • 제52권2호
    • /
    • pp.155-163
    • /
    • 2008
  • 유기-실리카 이용한 잔유 구리(II)의 양을 빠른 추출을 위한 간단하고 재현성을 가지는 방법과 불꽃원자 흡수분광법으로의 검출에 대해 연구하였다. 공통으로 존재하는 이온은 분리와 검출에 간섭받지 않았다. 예비농축인자는 100 ml시료 용량에 대해 100 (1 ml 추출용량) 이 였다.제안된 방법의 검출한계는 1.0 ng ml-1이다. 최적조건하에서 흡착제의 최고흡수용량은 5 mg 구리/g 흡착제 였다. 최적조건하에서 상대표준편차는 2.8% (n=10)을 얻었다. 다양한 양의 구리(II)이온은 스파이크한 자연수와 합성수를 시험 시료로 하여 정확도 등을 시험하였다.

에폭시/구상실리카 콤포지트의 전기적 절연파괴 및 인장 강도 특성 연구 (A Study on Electrical Insulation Breakdown and Tensile Strength for Epoxy/Spherical Silica Composites)

  • 이승훈
    • 한국전기전자재료학회논문지
    • /
    • 제26권10호
    • /
    • pp.726-730
    • /
    • 2013
  • In order to develop a high voltage insulation material, spherical silicas with two average particle sizes of 5 ${\mu}m$ and 20 ${\mu}m$ were mixed in different mixing ratios (1:0, 0.7:0.3, 0.5:0.5, 0.3:0.7, 0:1) and their total filling content was fixed at 65 wt%. In order to observe the dispersion of the spherical silicas and the interfacial morphology between silica and epoxy matrix, field emission scanning electron microscope (FE-SEM) was used. The electrical insulation breakdown strength was estimated in sphere-plate electrodes with different insulation thicknesses of 1, 2, and 3 mm. Electrical insulation breakdown strength decreased with increasing mixing ratio of 5/20 ${\mu}m$ and the thickness dependence of the breakdown strength was also observed. The tensile strength of the neat epoxy was 82.8 MPa as average value and its increased with decreasing particles size and that of epoxy/silica (2 ${\mu}m$) was 107 MPa, which was 130.8% higher value.

Synthesis of Poly(methacrylic acid)-functionalized SBA-15 and its Adsorption of Phenol in Aqueous Media

  • Vo, Vien;Kim, Hee-Jin;Kim, Ha-Yeong;Kim, Youngmee;Kim, Sung Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3570-3576
    • /
    • 2013
  • Poly(methacrylic acid)-functionalized SBA-15 silicas (denoted as P-x-PMA/SBA-15 where x is molar ratio of TSPM/(TEOS+TSPM) in percentage in the initial mixture) were synthesized by co-condensation of tetraethoxysilane and varying contents of 3-(trimethoxysilyl)propyl methacrylate in acidic medium with the block copolymer Pluronic 123 as a structure directing agent and then polymerization by methacrylic acid in the presence of ammonium persulfate as an initiator. The functionalized materials were characterized by PXRD, TEM, SEM, IR, and $N_2$ adsorption-desorption at 77 K. The investigation of phenol adsorption in aqueous solution on the materials showed that the poly(methacrylic acid)-functionalized mesoporous silicas possess strong adsorption ability for phenol with interaction of various kinds of hydrogen bonds. The adsorption data were fitted to Langmuir isotherms and the maximum adsorption capacity of the three functionalized materials P-5-PMA/SBA-15, P-10-PMA/SBA-15, and P-15-PMA/SBA-15 to be 129.37 mg/g, 187.97 mg/g, and 78.43 mg/g, respectively, were obtained. The effect of the pH on phenol adsorption was studied.