Browse > Article
http://dx.doi.org/10.7473/EC.2019.54.1.40

Reinforcing Performance of Networked Silicas in Silica-filled Chloroprene Rubber Compounds  

Ryu, Changseok (Mirae SI)
Yang, Jae-Kyoung (Mirae SI)
Park, Wonhyeong (Mirae SI)
Kim, Sun Jung (Mirae SI)
Kim, Doil (Mirae SI)
Seo, Gon (Mirae SI)
Kim, Wook-Soo (Nexen Tire)
Ahn, Ki Woong (Nexen Tire)
Kim, Beak Hwan (Nexen Tire)
Publication Information
Elastomers and Composites / v.54, no.1, 2019 , pp. 40-53 More about this Journal
Abstract
The physical properties of chloroprene rubber (CR) compounds reinforced with networked silicas were investigated by comparing them to those reinforced with conventional silica to observe the effect of the organic connection bonds combining silica particles on their cure, tensile, and aging performance. The introduction of networked silica to CR increase in silica content to 80 phr in rubber, while the content of conventional silica was limited to 60 phr. The CR compounds reinforced with networked silica showed higher resistance to combustion. The gradual increases in delta torque, Mooney viscosity, and modulus of silica-filled CR compounds with silica content were mainly attributed to the specific interaction between the chlorine atoms of CR and the hydroxyl groups of silica. The CR compounds reinforced with networked silica showed low compression set and heat build-up and maintained their high modulus even after thermal, oil, and ozone aging.
Keywords
networked silica; chloroprene rubber; reinforcement; silica content;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 W. Feng, Z. Tang, P. Weng, and B. Guo, "Correlation of filler networking with reinforcement and dynamic properties of SSBR/carbon black/silica composites", Rubber Chem. Technol., 86, 676 (2015).
2 S. Mihara, R. N. Datta, and J. W. M. Noordermeer, "Flocculation in silica reinforced rubber compounds", Rubber Chem. Technol., 82, 524 (2009).   DOI
3 C. G. Robertson, C. J. Lin, R. B. Bogoslovov, M. Rackaitis, P. Sadhukhan, J. D. Quinn, and C. M. Roland, "Flocculation, Reinforcement, and glass transition effects in silica-filled styrene-butadiene rubber", Rubber Chem. Technol., 84, 507 (2011).   DOI
4 G. Seo, S. Kaang, C. K. Hong, D. J. Jung, C. S. Ryu, and D. H. Lee, "Preparation of novel fillers, named networked silicas, and their effects of reinforcement on rubber compounds", Polym. Int. 57, 1101 (2008).   DOI
5 G. Seo, S. M. Park, K. Ha, K. T. Choi, C. K. Hong, and S. Kaang, "Effectively reinforcing roles of the networked silica prepared using 3,3'-bis(triethoxysilylpropyl)tetrasulfide in the physical properties of SBR compounds", J. Mater. Sci., 45, 1897 (2010).   DOI
6 C. Ryu, J.-K. Yang, W. Park, Y. Seo, S. J. Kim, D. Kim, S. Park, and Gon Seo, "Reinforcement of styrene-butadiene/polybutadiene rubber compounds by modified silicas with different surface and networked states," J. Appl. Polym. Sci., (2017), DOI:10.1002/APP.44893.   DOI
7 T. Sunada, Y. Abe, and N. Kobayashi, "Sulfur-modified chloroprene rubber composition and molded body," US patent 9 475 895 (2016).
8 H. Desai, K. G. Hendrikse, and C. D. Woolard, "Vulcanization of polychloroprene rubber. I. A revised cationic mechanism for ZnO crosslinking", J. Appl. Polym. Sci., 105, 865 ((2007).   DOI
9 B. J. Ramires and V. Gupta, "High tear strength polyuria foams with low compression set and shrinkage properties at elevated temperatures", Int. J. Mech. Sci., 150, 29 (2019).   DOI
10 T. Ha-Anh and T. Vu-Khanh, "Prediction of mechanical properties of polychloroprene during thermo-oxidation aging," Polymer Test., 24, 775 (2005).   DOI
11 B. P. Kapgate and C. Das, "Reinforcing efficiency and compatibilizing effect of sol-gel derived in situ silica for natural rubber/chloroprene rubber blends", RSC Adv., 4, 58816 (2014).   DOI
12 C. Siriwong, P. Sae-Oui, and C. Sirisinha, "Comparison of coupling effectiveness among amino-, chloro-, and mercapto silanes in chloroprene rubber", Polymer Test., 38, 64 (2014).   DOI
13 E. L. G. Denardin, D. Samios, P. R. Janissek, and G. P. de Souza, "Thermal degradation of aged chloroprene rubber studied by thermogravimetric analysis", Rubber Chem. Technol., 74, 622 (2001).   DOI
14 V. Le Saux, P. Y. Le Gac, Y. Marco, and S. Calloch, "Limit in the validity of Arrhenius predictions for field ageing of silica filled polychloroprene in a marine environment", Polym. Degrad. Stab., 99, 254 (2014).   DOI
15 I. C. Choi, W.-K. Lee, and C. Y. Park, "Cure characteristics, mechanical property and ozone resistance of natural rubber/bromo isobutylene isoprene rubber blend", Elast Compos., 53, 168 (2018).   DOI
16 J.-K. Yang, W. Park, C. Ryu, S. J. Kim, D. Kim, J.-H. Kim, and G. Seo, "Effects of coupling and dispersion agents on the properties of styrene-butadiene rubber/butadiene rubber compounds reinforced with different silica contents", Elast. Compos., 53, 109 (2018).   DOI
17 I. K. Sung and C. Y. Park, "Fire resistance properties of chloroprene rubber containing inorganic flame retardant", Elast. Compos., 50, 279 (2015).   DOI
18 P. Zhang, G. Huang, L. Qu, Y. Nie, G. Weng, and J. Wu, "Strain-induced crystallization behavior of polychloroprene rubber", J. Appl. Polym. Sci., 121, 37 (2011).   DOI
19 P. Y. Le Gac, V. Le Saux, M. Paris, and Y. Marco, "Ageing mechanism and mechanical degradation behaviour of polychloroprene rubber in a marine environment: Comparison of accelerated ageing and long term exposure", Polym. Degrad. Stab., 97, 288 (2012).   DOI
20 S. T. Tchalla, P. Y. Le Gac, R. Maurin, and R. Creac'hcadec, "Polychloroprene behaviour in a marine environment: Role of silica fillers", Polym. Degrad. Stab., 139, 28 (2017).   DOI
21 P. Sae-oui, C. Sirisinha, and K. Hatthapanit, "Effect of blend ratio on aging, oil and ozone resistance of silica-filled chloroprene rubber/natural rubber (CR/NR) blends", eXPRESS Polym. Lett., 1, 8 (2007).   DOI
22 B. P. Kapgate, C. Das, A. Das, D. Basu, S. Wiessener, U. Reuter, and G. Heinrich, "Reinforced chloroprene rubber by in situ generated silica particles: Evidence of bound rubber on the silica surface", J. Appl. Polym. Sci., (2016). DOI: 10.1002/APP.43717.   DOI
23 C. Siriwong, P. Sae-Oui, and C. Sirisinha, "Performance comparison of various surface modifying agents on properties of silica-filled chloroprene rubber", Rubber Chem. Technol., 90, 146 (2017).   DOI
24 M.-H. Yeh, W.-S. Hwang, and L.-R. Cheng, "Microstructure and mechanical properties of neoprene-montmorillonite nanocomposites", Appl. Surf. Sci., 253, 4777 (2007).   DOI
25 D. Kim, Y. K. Lee, S. S. Choi, and T. H. Kim, "Effects of filler types and compositions on the physical properties of chloroprene rubber", J. Korean Inst. Rubber Ind., 32, 295 (1997).
26 N. Hewitt, "Compounding Precipitated Silica in Elastomers: Theory and Practice", Chap. 6, William Andrew Publishing, Norwich, New York, 2007.
27 M. G. Maya, G. C. Soney, J. Thomasukutty, K. Lekshmi, and T. Sabu, "Development of a flexible and conductive elastomeric composite based on chloroprene rubber", Polymer Test., 65, 256 (2018).   DOI
28 A. Das, F. R. Costa, U. Wagenknecht, and G. Heinrich, "Nanocomposites based on chloroprene rubber: Effect of chemical nature and organic modification of nanoclay on the vulcanizate properties", Eur. Polym. J., 44, 3456 (2008).   DOI
29 Y. Chokanandsombat and C. Sirisinha, "MgO and ZnO as reinforcing fillers in cured polychloroprene rubber", J. Appl. Polym. Sci., (2013), DOI:10.1002/APP.38579.   DOI
30 P. Sae-oui, C. Sirisinha, U. Thepsuwan, and K. Hatthapanit, "Dependence of mechanical and aging properties of chloroprene rubber on silica and ethylene thiourea loadings", Eur. Polym. J., 43, 185 (2007).   DOI
31 N. Rattanasom, P. Kueseng, and C. Deeprasertkul, "Improvement of the mechanical and thermal properties of silica-filled polychloroprene vulcanizates prepared from latex system", J. Appl. Polym. Sci., 124, 2657 (2012).   DOI
32 C. J. Lin, T. E. Hogan, and W. L. Hergenrother, "On the filler flocculation in silica and carbon black filled rubbers: Part II. Filler flocculation and polymer-filler interaction", Rubber Chem. Technol., 77, 90 (2004).   DOI
33 Mettler and Toledo, "TGA of chloroprene rubber," http://www.mt.com.. 2019. 1. 17.
34 K. Sengloyluan, W. K. Dierkes, J. W. M. Noordermeer, and K. Sahakaro, "Reinforcement efficiency of silica in dependence of different types of silane coupling agents in natural rubber-based tire compounds", KGK, 44 (2016).
35 S. N. Lawandy and M. T. Wassef, "Long-term oil-seal embrittlement", J. Appl. Polym. Sci., 37, 567 (1989).   DOI
36 J. Oh and J. H. Kim, "Prediction of long-term creep deflection of seismic isolation bearings", J. Vibroeng., 19, 355 (2017).   DOI