• 제목/요약/키워드: silica shell

검색결과 96건 처리시간 0.029초

Synthesis of Flake Type Micro Hollow Silica Using Mg(OH)2 Inorganic Template

  • Lee, Ji-Seon;Noh, Kyeong-Jae;Moon, Seong-Cheol;Lee, Young-Chul;Lee, Seong-Eui
    • 한국세라믹학회지
    • /
    • 제54권3호
    • /
    • pp.222-227
    • /
    • 2017
  • Flake-type micro hollow silica was synthesized by precipitation method using an $Mg(OH)_2$ inorganic template and sodium silicate and ammonium sulfate as the silica precursors. We investigated the effects of the silica precursor concentration on the shape, shell thickness, and surface of the hollow silica. When the concentration of the silica precursor was 0.5 M, the hollow silica had a smooth and translucent thin shell, but the shell was broken. On the other hand, the shell thickness of the hollow silica changed in the range of 12 nm to 18 nm with the increase of the precursor concentration from 0.7 M to 1.1 M. Simultaneously, unintended spherical silica satellites were created on the shell surface. The number of satellites and the size rose according to the increased concentration of silica precursor. The reason for the formation of spherical silica satellites is that the $NH_4OH$ nucleus generated in the synthesis of hollow silica acted as another silica reaction site.

Functionalized magnetite / silica nanocomposite for oily wastewater treatment

  • Hakimabadi, Seyfollah Gilak;Ahmadpour, Ali;Mosavian, Mohammad T. Hamed;Bastami, Tahereh Rohani
    • Advances in environmental research
    • /
    • 제4권2호
    • /
    • pp.69-81
    • /
    • 2015
  • A new magnetite-silica core/shell nanocomposite ($Fe_3O4@nSiO_2@mSiO_2$) was synthesized and functionalized with trimethylchlorosilane (TMCS). The prepared nanocomposite was used for the removal of diesel oil from aqueous media. The characterization of magnetite-silica nanocomposite was studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), surface area measurement, and vibrating sample magnetization (VSM). Results have shown that the desired structure was obtained and surface modification was successfully carried out. FTIR analysis has confirmed the presence of TMCS on the surface of magnetite silica nanocomposites. The low- angle XRD pattern of nanocomposites indicated the mesoscopic structure of silica shell. Furthermore, TEM results have shown the core/shell structure with porous silica shell. Adsorption kinetic studies indicated that the nanocomposite was able to remove 80% of the oil contaminant during 2 h and fit well with the pseudo-second order model. Equilibrium studies at room temperature showed that the experimental data fitted well with Freundlich isotherm. The magnetic property of nanocomposite facilitated the separation of solid phase from aqueous solution.

In-Situ Synthesis of PS/(-)Silica Composite Particles in Dispersion Polymerization Using An ($\pm$) Amphoteric Initiator

  • Hwang, Deok-Ryul;Hong, Jin-Ho;Lee, Jeong-Woo;Shim, Sang-Eun
    • Macromolecular Research
    • /
    • 제16권4호
    • /
    • pp.329-336
    • /
    • 2008
  • Core/shell ($\pm$)PS/(-)silica nanocomposite particles were synthesized by dispersion polymerization using an amphoteric initiator, 2,2'-azobis [N-(2-carboxyethyl)-2,2-methylpropionamidine] ($HOOC(CH_2)_2HN$(HN=) $C(CH_3)_2CN$=NC $(CH_3)_2C$(=NH)NH $(CH_2)_2COOH$), VA-057. Negatively charged (-6.9 mV) silica was used as the stabilizer. The effects of silica addition time and silica and initiator concentrations were investigated in terms of polymerization kinetics, ultimate particle morphology, and size/size distribution. Uniform hybrid microspheres with a well-defined, core-shell structure were obtained at the following conditions: silica content = 10-15 wt% to styrene, VA-057 content=above 2 wt% to styrene and silica addition time=0 min after initiation. The delay in silica addition time retarded the polymerization kinetics and broadened the particle size distribution. The rate of polymerization was strongly affected by the silica content: it increased up to 15 wt% silica but then decreased with further increase in silica content. However, the particle size was only marginally influenced by the silica content. The zeta potential of the composite particles slightly decreased with increasing silica content. With increasing VA-057 concentration, the PS microspheres were entirely coated with silica sol above 1.0 wt% initiator.

코어-쉘 구조 SiO2@Au 나노입자의 in-situ 합성 (Nanostructure Construction of SiO2@Au Core-Shell by In-situ Synthesis)

  • 편무재;김도경;정영근
    • 한국분말재료학회지
    • /
    • 제25권5호
    • /
    • pp.420-425
    • /
    • 2018
  • Core-shell structured nanoparticles are garnering attention because these nanoparticles are expected to have a wide range of applications. The objective of the present study is to improve the coating efficiency of gold shell formed on the surface of silica nanoparticles for $SiO_2@Au$ core-shell structure. For the efficient coating of gold shell, we attempt an in-situ synthesis method such that the nuclei of the gold nanoparticles are generated and grown on the surface of silica nanoparticles. This method can effectively form a gold shell as compared to the conventional method of attaching gold nanoparticles to silica particles. It is considered possible to form a dense gold shell because the problems caused by electrostatic repulsion between the gold nanoparticles in the conventional method are eliminated.

One-pot Synthesis of Multifunctional Mn3O4/mesoporous Silica Core/shell Nanoparticles for Biomedical Applications

  • Lee, Dong Jun;Lee, Nohyun;Lee, Ji Eun
    • 공업화학
    • /
    • 제33권1호
    • /
    • pp.113-118
    • /
    • 2022
  • Multifunctional nanomaterials based on mesoporous silica nanoparticles (MSN) and metal oxide nanocrystals are among the most promising materials for theragnosis because of their ease of modification and high biocompatibility. However, the preparation of multifunctional nanoparticles requires time-consuming multistep processes. Herein, we report a simple one-pot synthesis of multifunctional Mn3O4/mesoporous silica core/shell nanoparticles (Mn3O4@mSiO2) involving the temporal separation of core formation and shell growth. This simple procedure greatly reduces the time and effort required to prepare multifunctional nanoparticles. Despite the simplicity of the process, the properties of nanoparticles are not markedly different from those of core/shell nanoparticles synthesized by a previously reported multistep process. The Mn3O4@mSiO2 nanoparticles are biocompatible and have potential for use in optical imaging and magnetic resonance imaging.

Porous Silica Particles As Chromatographic Separation Media: A Review

  • Cheong, Won Jo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3465-3474
    • /
    • 2014
  • Porous silica particles are the most prevailing raw material for stationary phases of liquid chromatography. During a long period of time, various methodologies for production of porous silica particles have been proposed, such as crashing and sieving of xerogel, traditional dry or wet process preparation of conventional spherical particles, preparation of hierarchical mesoporous particles by template-mediated pore formation, repeated formation of a thin layer of porous silica upon nonporous silica core (core-shell particles), and formation of specific silica monolith followed by grinding and calcination. Recent developments and applications of useful porous silica particles will be covered in this review. Discussion on sub-$3{\mu}m$ silica particles including nonporous silica particles, carbon or metal oxide clad silica particles, and molecularly imprinted silica particles, will also be included. Next, the individual preparation methods and their feasibilities will be collectively and critically compared and evaluated, being followed by conclusive remarks and future perspectives.

이중 다공성 실리카 나노입자 합성 및 공극 크기 조절 (Synthesis of Double Mesoporous Silica Nanoparticles and Control of Their Pore Size)

  • Park, Dae Keun;Ahn, Jung Hwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.167-169
    • /
    • 2021
  • In this study, monodispersive silica nanoparticles with double mesoporous shells were synthesized, and the pore size of synthetic mesoporous silica nanoparticles was controlled. Cetyltrimethylammonium chloride (CTAC), N, N-dimethylbenzene, and decane were used as soft template and induced to form outer mesoporous shell. The resultant double mesoporous silica nanoparticles were consisted of two layers of shells having different pore sizes, and it has been confirmed that outer shells with larger pores (Mean pore size > 2.5 nm) are formed directly on the surface of the smaller pore sized shell (Mean pore size < 2.5 nm). It was confirmed that the regulation of the molar ratio of pore expansion agents plays a key role in determining the pore size of double mesoporous shells.

대구경 실리카 입자를 이용한 실리카/티타니아 코어-쉘 입자의 제조 (Preparation of SiO2/TiO2 Core-Shell Particles Using Large-Size Silica Particles)

  • 박영훈;이재원;공성민;김우식;김진수
    • 공업화학
    • /
    • 제18권2호
    • /
    • pp.183-187
    • /
    • 2007
  • 대구경 실리카 입자를 사용하여 실리카/티타니아 코어-쉘 입자를 제조하였으며, 반복 코팅에 의해 티타니아 코팅 층의 두께를 조절하였다. 티타니아 코팅층의 두께는 코팅횟수를 1회에서 3회로 늘림에 따라 8 nm에서 38 nm로 증가하였다. 코팅 후 입자의 표면은 티타니아 코팅 층으로 인해 거칠어 졌으며 비표면적도 3~25배 증가하였다. 티타니아가 코팅된 실리카 입자의 특성은 FE-SEM, 제타전위기, BET, XRD 등을 이용해 분석하였다.

PBA/PS 코어-셀 압력가소성 고분자와 실리카 나노입자의 블렌딩 (Blending of Silica Nanoparticles with PBA/PS Core-Shell Baroplastic Polymers)

  • 김민정;최용두;류상욱
    • 폴리머
    • /
    • 제32권6호
    • /
    • pp.573-579
    • /
    • 2008
  • 두 단계 에멀젼 중합을 통해 PBA/PS 코어-셸 고분자 나노입자 및 실리카가 함유된 유기-무기 하이브리드 재료를 합성하였다. 실리카 나노입자는 코어-셸 고분자 에멀젼과 혼합되어 $Na_2CO_3$가 녹아있는 증류수/메탄올의 혼합용매에 침전되었다. 건조 후 압축성형으로 제조된 시편의 물성평가를 통해 탄성계수는 코어-셸 나노입자의 크기가 작을수록, 분자량이 클수록, 실리카가 많이 첨가될수록 증가함을 확인하였다. 또한 PBA/PS 코어-셸 고분자는 실리카가 13.0 wt% 첨가되었음에도 불구하고 25$^\circ$C, 13.8 MPa, 5분의 조건에서 우수한 압력가소성 특징을 나타내었으며 6배 이상 증가된 탄성계수가 얻어졌다.

Monodisperse Micrometer-Ranged Poly(methyl methacrylate) Hybrid Particles Coated with a Uniform Silica Layer

  • Han, Seung-Jin;Shin, Kyo-Min;Suh, Kyung-Do;Ryu, Jee-Hyun
    • Macromolecular Research
    • /
    • 제16권5호
    • /
    • pp.399-403
    • /
    • 2008
  • Monodisperse, micron-sized, hybrid particles having a core-shell structure were prepared by coating the surface of poly(methyl methacrylate)(PMMA) microspheres with silica and by copolymerizing acrylamide (AAm) to supply the hydrogen bonding effect by means of the amide groups. Tetraethoxysilane (TEOS) was then slowly dropped onto the medium under certain conditions. Because of the hydrogen bonding between the amide of the PMMA particles and the hydroxyl group of the hydrolyzed silanol, a silica shell was generated on the PMMA core particles. The morphology of the hybrid particles was investigated with transmission (TEM) and scanning (SEM) electron microscopy as a function of the medium conditions and the amount of TEOS. Improved thermal properties were observed by TGA analysis.