DOI QR코드

DOI QR Code

Porous Silica Particles As Chromatographic Separation Media: A Review

  • Received : 2014.07.14
  • Accepted : 2014.08.08
  • Published : 2014.12.20

Abstract

Porous silica particles are the most prevailing raw material for stationary phases of liquid chromatography. During a long period of time, various methodologies for production of porous silica particles have been proposed, such as crashing and sieving of xerogel, traditional dry or wet process preparation of conventional spherical particles, preparation of hierarchical mesoporous particles by template-mediated pore formation, repeated formation of a thin layer of porous silica upon nonporous silica core (core-shell particles), and formation of specific silica monolith followed by grinding and calcination. Recent developments and applications of useful porous silica particles will be covered in this review. Discussion on sub-$3{\mu}m$ silica particles including nonporous silica particles, carbon or metal oxide clad silica particles, and molecularly imprinted silica particles, will also be included. Next, the individual preparation methods and their feasibilities will be collectively and critically compared and evaluated, being followed by conclusive remarks and future perspectives.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Unger, K. K.; Kumar, D.; Grün, M.; Büchel, G.; Ludtke, S.; Adam, T.; Schumacher, K.; Renker, S. J. Chromatogr. A 2000, 892, 47-55. https://doi.org/10.1016/S0021-9673(00)00177-1
  2. Fekete, S.; Olahb, E.; Fekete, J. J. Chromatogr. A 2012, 1228, 57-71. https://doi.org/10.1016/j.chroma.2011.09.050
  3. Guiochon, G.; Gritti, F. J. Chromatogr. A 2011, 1218, 1915-1938. https://doi.org/10.1016/j.chroma.2011.01.080
  4. Asefa, T.; Tao, Z. Can. J. Chem. 2012, 90, 1015-1031. https://doi.org/10.1139/v2012-094
  5. Brady, R.; Woonton, B.; Gee, M. L.; O'Connor, A. J. Innov. Food Sci. Emerg. Technol. 2008, 9, 243-248. https://doi.org/10.1016/j.ifset.2007.10.002
  6. Prouzet, E.; Boissiere, C. C. R. Chim. 2005, 8, 579-596. https://doi.org/10.1016/j.crci.2004.09.011
  7. Wang, Y.; Ai, F.; Ng, S.; Tan, T. T. Y. J. Chromatogr. A 2012, 1228, 99-109. https://doi.org/10.1016/j.chroma.2011.08.085
  8. Bocian, S.; Buszewski, B. J. Sep. Sci. 2012, 35, 1191-1200. https://doi.org/10.1002/jssc.201200055
  9. Qiu, H.; Liang, X.; Sun, M.; Jiang, S. Anal. Bioanal. Chem. 2011, 399, 3307-3322. https://doi.org/10.1007/s00216-010-4611-x
  10. Chester, T. L. Anal. Chem. 2013, 85, 579-589. https://doi.org/10.1021/ac303180y
  11. Pesek, J. J.; Matyska, M. T.; Boysen, R. I.; Yang, Y.; Hearn, M. T. W. Trends Anal. Chem. 2013, 42, 64-73. https://doi.org/10.1016/j.trac.2012.09.016
  12. Liu, Q.; Wang, L.-T.; Dong, S.-Q.; Zhang, Z.-X.; Zhao, L. J. Inorg. Organomet. Polym. 2011, 21, 941-945. https://doi.org/10.1007/s10904-011-9549-8
  13. Kirkland, J. J. Anal. Chem. 1992, 64, 1239-1245. https://doi.org/10.1021/ac00035a009
  14. Stober, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62-69. https://doi.org/10.1016/0021-9797(68)90272-5
  15. Geische, H. J. Eur. Ceram. Soc. 1994, 14, 205-214. https://doi.org/10.1016/0955-2219(94)90088-4
  16. Lee, W.-C.; Chuang, C.-Y. J. Chromatogr. A 1996, 721, 31-39. https://doi.org/10.1016/0021-9673(95)00756-3
  17. Kambara, K.; Shimura, N.; Ogawa, M. J. Ceram. Soc. Japan 2007, 115, 315-318. https://doi.org/10.2109/jcersj.115.315
  18. Shimura, N.; Ogawa, M. J. Mater. Sci. 2007, 42, 5299-5306. https://doi.org/10.1007/s10853-007-1771-y
  19. Gritti, F.; Cavazzini, A.; Marchetti, N.; Guiochon, G. J. Chromatogr. A 2007, 1157, 289-303. https://doi.org/10.1016/j.chroma.2007.05.030
  20. DeStefano, J. J.; Langlois, T. J.; Kirkland, J. J. J. Chromatogr. Sci. 2008, 46, 255-260.
  21. Feketea, S.; Ganzler, K.; Fekete, J. J. Pharm. Biomed. Anal. 2011, 54, 482-490. https://doi.org/10.1016/j.jpba.2010.09.021
  22. DeStefano, J. J.; Schuster, S. A.; Lawhorn, J. M.; Kirkland, J. J. J. Chromatogr. A 2012, 1258, 76-83. https://doi.org/10.1016/j.chroma.2012.08.036
  23. Gritti, F.; Leonardisa, I.; Shock, D.; Stevenson, P.; Shalliker, A.; Guiochon, G. J. Chromatogr. A 2010, 1217, 1589-1603. https://doi.org/10.1016/j.chroma.2009.12.079
  24. Schuster, S. A.; Boyes, B. E.; Wagner, B. M.; Kirkland, J. J. J. Chromatogr. A 2012, 1228, 232-241. https://doi.org/10.1016/j.chroma.2011.07.082
  25. Lesellier, E. J. Chromatogr. A 2012, 1228, 89-98. https://doi.org/10.1016/j.chroma.2011.11.058
  26. Lomsadze, K.; Jibuti, G.; Farkas, T.; Chankvetadze, B. J. Chromatogr. A 2012, 1234, 50-55. https://doi.org/10.1016/j.chroma.2012.01.084
  27. VanMiddlesworth, B. J.; Dorsey, J. G. J. Chromatogr. A 2011, 1218, 7158-7165. https://doi.org/10.1016/j.chroma.2011.08.030
  28. Fekete, S.; Guillarme, D. J. Chromatogr. A 2013, 1308, 104-113. https://doi.org/10.1016/j.chroma.2013.08.008
  29. Sanchez, A. C.; Friedlander, G.; Fekete, S.; Anspach, J.; Guillarme, D.; Chitty, M.; Farkas, T. J. Chromatogr. A 2013, 1311, 90-97. https://doi.org/10.1016/j.chroma.2013.08.065
  30. Fekete, S.; Guillarme, D. J. Chromatogr. A 2013, 1320, 86-95. https://doi.org/10.1016/j.chroma.2013.10.061
  31. Patel, K. D.; Jerkovich, A. D.; Link, J. C.; Jorgenson, J. W. Anal. Chem. 2004, 76, 5777-5786. https://doi.org/10.1021/ac049756x
  32. Qu, Q.; Lu, X.; Huang, X.; Hu, X.; Zhang, Y.; Yan, C. Electrophoresis 2006, 27, 3981-3987. https://doi.org/10.1002/elps.200600012
  33. Mazzeo, J. R.; Neue, U. D.; Kele, M.; Plumb, R. S. Anal. Chem. 2005, 77, 462A-467A.
  34. Durham, D. K.; Hurley, T. R. J. Liq. Chrom. & Rel. Technol. 2007, 30, 1895-1901. https://doi.org/10.1080/10826070701386462
  35. Fekete, S.; Ganzler, K.; Fekete, J. J. Pharm. Biomed. Anal. 2010, 51, 56-64. https://doi.org/10.1016/j.jpba.2009.08.003
  36. Olah, E.; Fekete, S.; Fekete, J.; Ganzler, K. J. Chromatogr. A 2010, 1217, 3642-3653. https://doi.org/10.1016/j.chroma.2010.03.052
  37. Novakova, L.; Solichova, D.; Solich, P. J. Sep. Sci. 2006, 29, 2433-2443. https://doi.org/10.1002/jssc.200600147
  38. Wyndham, K. D.; O'Gara, J. E.; Walter, T. H.; Glose, K. H.; Lawrence, N. L.; Alden, B. A.; Izzo, G. S.; Hudalla, C. J.; Iraneta, P. C. Anal. Chem. 2003, 75, 6781-6788. https://doi.org/10.1021/ac034767w
  39. Jiang, Z.; Fisk, R. P.; O'Gara, J. E.; Walter, T. H.; Wyndham, K. D. U.S. Patent Appl. 09/924,399, 2001.
  40. Thoelen, C.; Paul, J.; Vankelecom, I. F. J.; Jacobs, P. A. Tetrahedron: Asymmetry 2000, 11, 4819-4823. https://doi.org/10.1016/S0957-4166(00)00439-0
  41. Boissiere, C.; Kummel, M.; Persin, M.; Larbot, A.; Prouzet, E. Adv. Funct. Mater. 2001, 11, 129-135. https://doi.org/10.1002/1616-3028(200104)11:2<129::AID-ADFM129>3.0.CO;2-W
  42. Mesa, M.; Sierra, L; Lopez, B.; Ramirez, A.; Guth, J. Solid State Sci. 2003, 5, 1303-1308. https://doi.org/10.1016/S1293-2558(03)00185-7
  43. Han, Y.; Lee, S. S.; Ying, J. Y. Chem. Mater. 2007, 19, 2292-2298. https://doi.org/10.1021/cm063050x
  44. Martin, T.; Galarneau, A.; Di Renzo, F.; Brunel, D.; Fajula, F. Chem. Mater. 2004, 16, 1725-1731. https://doi.org/10.1021/cm030443c
  45. Chung, J.-S.; Kim, D.-J.; Ahn, W.-H.; Ko, J.-H.; Cheong, W.-J. Korean J. Chem. Eng. 2004, 21, 132-139. https://doi.org/10.1007/BF02705391
  46. Wan, H.; Liu, L.; Li, C.; Xue, X.; Liang, X. J. Colloid Interf. Sci. 2009, 337, 420-426. https://doi.org/10.1016/j.jcis.2009.05.065
  47. Li,Y.; Cheng, S.; Dai, P.; Liang, X.; Ke, Y. Chem. Commun. 2009, 1085-1087.
  48. Lee, G.; Youn, H.-K.; Jin, M.-J.; Cheong, W.-J.; Ahn, W.-S. Microporous Mesoporous Mater. 2010, 132, 232-238. https://doi.org/10.1016/j.micromeso.2010.02.025
  49. Li, C.; Di, B.; Hao, W.; Yan, F.; Su, M. J. Chromatogr. A 2011, 1218, 408-415. https://doi.org/10.1016/j.chroma.2010.11.048
  50. Zhang, Y. P.; Jin, Y.; Dai, P. C.; Yu, H.; Yu, D. H.; Ke, Y. X.; Liang, X. M. Anal. Methods 2009, 1, 123-127. https://doi.org/10.1039/b9ay00073a
  51. Zhang, Y.; Jin, Y.; Yu, H.; Dai, P.; Ke, Y.; Liang, X. Talanta 2010, 81, 824-830. https://doi.org/10.1016/j.talanta.2010.01.022
  52. Chang, Y. X.; Zhou, L. L.; Li, G. X.; Li, L.; Yuan, L. M. J. Liq. Chrom. & Rel. Technol. 2007, 30, 2953-2958. https://doi.org/10.1080/10826070701589057
  53. Liang, X.; Liu, S.; Liu, H.; Liu, X.; Jiang, S. J. Sep. Sci. 2010, 33, 3304-3312. https://doi.org/10.1002/jssc.201000379
  54. Paek, C.; McCormick, A. V.; Carr, P. W. J. Chromatogr. A 2011, 1218, 1359-1366. https://doi.org/10.1016/j.chroma.2010.12.114
  55. Paek, C.; Huang, Y.; Filgueira, M. R.; McCormick, A. V.; Carr, P. W. J. Chromatogr. A 2012, 1229, 129-139. https://doi.org/10.1016/j.chroma.2011.12.099
  56. Dun, H.; Zhang, W.; Wei, Y.; Xiuqing, S.; Li, Y.; Chen, L. Anal. Chem. 2004, 76, 5016-5023. https://doi.org/10.1021/ac030389j
  57. Ge, J.; Shi, X.; Li, Y.; Chen, L. Chromatographia 2006, 63, 25-30. https://doi.org/10.1365/s10337-005-0697-2
  58. Ge, J.; Li, Y.; Chen, L. J. Liq. Chrom. & Rel. Technol. 2006, 29, 2329-2339. https://doi.org/10.1080/10826070600864700
  59. Liang, X.; Wang, S.; Niu, J.; Liu, X.; Jiang, S. J. Chromatogr. A 2009, 1216, 3054-3058. https://doi.org/10.1016/j.chroma.2009.01.072
  60. Cabrera, K. J. Sep. Sci. 2004, 27, 843-852. https://doi.org/10.1002/jssc.200401827
  61. Ko, J. H.; Baik, Y. S.; Park, S. T.; Cheong, W. J. J. Chromatogr. A 2007, 1144, 269-274. https://doi.org/10.1016/j.chroma.2007.01.086
  62. Han, K. M.; Cheong, W. J. Bull. Korean Chem. Soc. 2008, 29, 2281-2283. https://doi.org/10.5012/bkcs.2008.29.11.2281
  63. Lee, S. M.; Zaidi, S. A.; Cheong, W. J. Bull. Korean Chem. Soc. 2010, 31, 2943-2948. https://doi.org/10.5012/bkcs.2010.31.10.2943
  64. Ali, F.; Cheong, W. J.; ALOthman, Z. A.; ALMajid, A. M. J. Chromatogr. A 2013, 1303, 9-17. https://doi.org/10.1016/j.chroma.2013.06.016
  65. Ali, F.; Kim, Y. S.; Lee, J. W.; Cheong, W. J. J. Chromatogr. A 2014, 1324, 115-120. https://doi.org/10.1016/j.chroma.2013.11.027
  66. Vasapollo, G.; Sole, R. D.; Mergola, L.; Lazzoi, M. R.; Scardino, A.; Scorrano, S.; Mele, G. Int. J. Mol. Sci. 2011, 12, 5908-5945. https://doi.org/10.3390/ijms12095908
  67. Cheong, W. J.; Yang, S. H.; Ali, F. J. Sep. Sci. 2013, 36, 609-628. https://doi.org/10.1002/jssc.201200784
  68. He, C.; Long, Y.; Pan, J.; Li, K.; Liu, F. Talanta 2008, 74, 1126-1131. https://doi.org/10.1016/j.talanta.2007.08.009
  69. Jin, G.; Zhang, B.; Tang, Y.; Zuo, X.; Wang, S.; Tang, J. Talanta 2011, 84, 644-650. https://doi.org/10.1016/j.talanta.2011.01.035
  70. Morais, E. C.; Correa, G. G.; Brambilla, R.; Livotto, P. R.; dos Santos, J. H.; Cardoso, M. B. J. Sol-Gel Sci. Technol. 2012, 64, 324-334. https://doi.org/10.1007/s10971-012-2861-0
  71. Yin, Y.; Chen, Y.; Wang, X.; Liu, Y.; Liu, H.; Xie, M. J. Chromatog. A 2012, 1220, 7-13. https://doi.org/10.1016/j.chroma.2011.11.065
  72. Bagheri, H.; Piri-Moghadam, H. Anal. Bioanal. Chem. 2012, 404, 1597-1602. https://doi.org/10.1007/s00216-012-6206-1
  73. Cancelliere, G.; D'Acquarica, I.; Gasparrini, F.; Maggini, M.; Misiti, D.; Villani, C. J. Sep. Sci. 2006, 29, 770-781. https://doi.org/10.1002/jssc.200500517
  74. Schneiderman, E.; Stalcup, A. M. J. Chromatogr. B 2000, 745, 83-102. https://doi.org/10.1016/S0378-4347(00)00057-8
  75. Bluhm, L.; Huang, J.; Li, T. Anal. Bioanal. Chem. 2005, 382, 592-598. https://doi.org/10.1007/s00216-005-3171-y
  76. Okamoto, Y.; Yashima, E. Angew. Chem. Int. Ed. 1998, 37, 1020-1043. https://doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1020::AID-ANIE1020>3.0.CO;2-5
  77. Ali, I.; Aboul-Enein, H. Y. J. Sep. Sci. 2006, 29, 762-769. https://doi.org/10.1002/jssc.200500372
  78. Haginaka, J. J. Chromatogr. B 2008, 875, 12-19. https://doi.org/10.1016/j.jchromb.2008.05.022
  79. Nakano, T. J. Chromatogr. A 2001, 906, 205-225. https://doi.org/10.1016/S0021-9673(00)00944-4

Cited by

  1. Production of Raw and Ligand-modified Silica Monolith Particles in an Enhanced Scale and their Application in High Performance Liquid Chromatography vol.38, pp.8, 2017, https://doi.org/10.1002/bkcs.11203
  2. ChemInform Abstract: Porous Silica Particles as Chromatographic Separation Media: A Review vol.46, pp.5, 2015, https://doi.org/10.1002/chin.201505280
  3. Ten-gram-scale preparation of PTMS-based monodisperse ORMOSIL nano- and microparticles and conversion to silica particles vol.20, pp.3, 2018, https://doi.org/10.1007/s11051-018-4186-6
  4. Styrene‐N‐phenylacrylamide co‐polymer modified silica monolith particles with an optimized mixing ratio of monomers as a new stationary phase for the separation of peptides in high p vol.42, pp.16, 2014, https://doi.org/10.1002/jssc.201900215
  5. An optimized mixed‐mode stationary phase based on silica monolith particles for the separation of peptides and proteins in high‐performance liquid chromatography vol.42, pp.24, 2014, https://doi.org/10.1002/jssc.201900914