Blending of Silica Nanoparticles with PBA/PS Core-Shell Baroplastic Polymers

PBA/PS 코어-셀 압력가소성 고분자와 실리카 나노입자의 블렌딩

  • Kim, Min-Jeong (School of Chemical Engineering, College of Engineering, Chungbuk National University) ;
  • Choi, Yong-Doo (Molecular Imaging and Therapy Branch, National Cancer Center) ;
  • Ryu, Sang-Woog (School of Chemical Engineering, College of Engineering, Chungbuk National University)
  • 김민정 (충북대학교 공과대학 화학공학부) ;
  • 최용두 (국립암센터 분자영상치료연구과) ;
  • 류상욱 (충북대학교 공과대학 화학공학부)
  • Published : 2008.11.30

Abstract

PBA/PS core-shell polymer nanoparticles were synthesized by two stage emulsion polymerization and hybridized with silica nanoparticle by simple mixing in emulsion state and following precipitation into water/methanol mixture dissolving $Na_2CO_3$. The stress-strain curve revealed that the elastic modulus was increased with increasing molecular weight of polymer and silica weight fraction but decreased with increasing size of core-shell nanoparticle. Especially, there was a rapid increase of elastic modulus with silica blending. As a result, 6 times higher elastic modulus was observed in PBA/PS core-shell baroplastic sample processed at 25$^\circ$C under 13.8 MPa for 5 min by blending with 13.0 wt% of silica nanoparticle.

두 단계 에멀젼 중합을 통해 PBA/PS 코어-셸 고분자 나노입자 및 실리카가 함유된 유기-무기 하이브리드 재료를 합성하였다. 실리카 나노입자는 코어-셸 고분자 에멀젼과 혼합되어 $Na_2CO_3$가 녹아있는 증류수/메탄올의 혼합용매에 침전되었다. 건조 후 압축성형으로 제조된 시편의 물성평가를 통해 탄성계수는 코어-셸 나노입자의 크기가 작을수록, 분자량이 클수록, 실리카가 많이 첨가될수록 증가함을 확인하였다. 또한 PBA/PS 코어-셸 고분자는 실리카가 13.0 wt% 첨가되었음에도 불구하고 25$^\circ$C, 13.8 MPa, 5분의 조건에서 우수한 압력가소성 특징을 나타내었으며 6배 이상 증가된 탄성계수가 얻어졌다.

Keywords

References

  1. C. Barthet, A. J. Hickey, D. B. Cairns, and S. P. Armes, Adv. Mater., 11, 408 (2003)
  2. S. X. Zhou, L. M. Wu, J. Sun, and W. D. Shen, Prog. Org. Coat., 45, 33 (2002)
  3. M. J. Percy, C. Barthet, J. C. Lobb, M. A. Khan, S. F. Lascelles, M. Vamvakaki, and S. P. Armes, Langmuir, 16, 6913 (2000)
  4. T. Bein and P. Enzel, J. Phys. Chem., 93, 6270 (1989) https://doi.org/10.1021/j100339a085
  5. N. Sheng, M. C. Boyce, D. M. Parks, G. C. Rutledge, J. I. Abes, and R. E. Cohen, Polymer, 45, 487 (2004)
  6. G. D. Smith, D. Bedrov, L. Li, and O. Byutner, J. Chem. Phys., 117, 9478 (2002)
  7. D. Brown, P. Mele, S. Marceau, and N. D. Alberola, Macromolecules, 36, 1395 (2003)
  8. H. Sugimoto, K. Daimatsu, E. Nakanishi, Y. Ogasawara, T. Yasumura, and K. Inomata, Polymer, 47, 3754 (2006) https://doi.org/10.1016/j.polymer.2005.11.031
  9. B. J. Ash, R. W. Siegel, and L. S. Schadler, Macromolecules, 37, 1358 (2004)
  10. E. Reynaud, T. Jouen, C. Gautier, G. Vigier, and J. Varlet, Polymer, 42, 8759 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  11. J. He, H. Li, X. Wang, and Y. Gao, Eur. Polym. J., 42, 1128 (2006)
  12. H. Yang, Q. Zhang, M. Guo, C. Wang, R. N. Du, and Q. Fu, Polymer, 47, 2106 (2006) https://doi.org/10.1016/j.polymer.2005.11.031
  13. J. A. Gonzales-Leon, M. H. Acar, S. -W. Ryu, A. V. Ruzette, and A. M. Mayes, Nature(London), 426, 424 (2003)
  14. J. A. Gonzales-Leon, S. -W. Ryu, S. A. Hewlett, S. H. Ibrahim, and A. M. Mayes, Macromolecules, 38, 8036 (2005)
  15. M. Pollard, T. P. Russell, A. V. Ruzette, A. M. Mayes, and Y. Gallot, Macromolecules, 31, 6493 (1998)
  16. A. V. Ruzette, P. Banerjee, A. M. Mayes, and T. P. Russell, J. Chem. Phys., 114, 8205 (2001) https://doi.org/10.1063/1.1334599
  17. D. Y. Ryu, D. J. Lee, J. K. Kim, K. A. Lavery, T. P. Russell, Y. S. Han, C. H. Lee, and P. Thiyagarajan, Phys. Rev. Lett., 90, 235501 (2003)
  18. A. V. Ruzette, A. M. Mayes, M. Pollard, T. P. Russell, and B. Hammouda, Macromolecules, 36, 3551 (2003)
  19. G. -H. Hsiue, W. -J. Kuo, Y. -P. Huang, and R. -J. Jeng, Polymer, 41, 2813 (2000)
  20. H. Wang, P. Xu, S. Meng, W. Zhong, W. Du, and Q. Du, Polym. Degrad. Stabil., 91, 1455 (2006)
  21. A. Burns, H. P. Brack, and W. M. Risen Jr., J. Non-Cryst. Solids, 131, 994 (1991)