• Title/Summary/Keyword: silica sand

Search Result 240, Processing Time 0.025 seconds

The Electrical and Optical Characteristics of Silica Sand by Terahertz Electromagnetic Pulses (테라헤르츠 전자기 펄스를 이용한 이산화규소의 전기적 광학적 특성)

  • 전태인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.202-206
    • /
    • 2001
  • Using THz time-domain spectroscopy (THz-TDS), the power absorption, the index of refraction, and the real conductivity of silica sand are measured from 0.1[Thz] to 0.5[Thz] frequency range. It is impossible to measure the characterization of the silica sand by simple electrical measurements using mechanical contacts, e.g., Hall effect or four-point probe measurements. However, the THz-TDS technique can measure not only electrical but also optical characterization of he sample. Also this technique can measure frequency dependent results. Especially, the real conductivity was increased according to THz frequency. This is unusual material compare with metal and semiconductor materials; the measured real conductivity are not followed by the simple Drude theory.

  • PDF

Study on Phosphate Investment for High Temperature Precision Castings(I);The Effect of Particle size and Distribution of Silica Sand on the characteristics of the Investment (고온정밀주조용 인산염계 매몰재에 관한 연구(I);매몰재의 특성에 미치는 규사의 입도와 입도분포의 영향)

  • Ahn, Ji-Hong;Lee, Jong-Nam
    • Journal of Korea Foundry Society
    • /
    • v.5 no.2
    • /
    • pp.85-96
    • /
    • 1985
  • In order to investigate the effect of particle size and distribution of silica sand on the characteristics of investment, W/P ratio, setting time, temperature change during setting, setting expansion, thermal expansion and compressive strength of the investments were measured. In this experiment, magnesia clinker and mono ammonium phosphate were used as binder, and particle size and distribution of silica sand were classified for convinence into 10 categories. The main results obtained from this investigation were summerized as follows. 1. W/P ratio decreased with increase of particle size and evenness in distribution of sand grain. 2. Setting time decreased with increase of evenness in distribution of sand grain, and temperature during setting increased with evenness in distribution of sand grain. 3. Setting expansion decreased with increase of particle size, while it increased with evenness in distribution of sand grain. 4. Thermal expansion decreased with increase of particle size. 5. Compressive strength increased with increase of particle size and evenness in distribution of sand grain. From above results, G.F.N. 250 sand which contains 30% of 50-100 mesh could be recommended for investment casting.

  • PDF

Preparation of High-grade Silica Sand for Metallurgical-grade Si Using a Physical Beneficiation (금속급 실리콘용 고순도 규사 제조를 위한 물리적 정제 특성)

  • Yang, Young-Cheol;Jeong, Soo-Bok;Chae, Young-Bae;Kim, Seong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.191-197
    • /
    • 2009
  • It is very important to raise the purity of silica for manufacturing metallurgical-grade silicon because the purification of silicon in the smelting process is very difficult. In present study, the silica sand which is obtained from Vietnam was mineralogically analyzed. Based on the results, a novel process to separate impurities from the silica sand was developed, which consisted of classification, specific gravity and magnetic separation steps. Using the developed process, high-grade silica sand concentrate containing over 99.8 wt% $SiO_2$ was prepared, being suitable for manufacturing the metallurgical-grade silicon.

An Experimental Study on the Chemical Resistance of Concrete(II) -The case of mortar with silica sand particle- (콘크리트의 내화학성에 관한 실험적 연구(II)-규사 분말을 치환한 모르터의 경우-)

  • 윤보현;김제원;설광욱;김명재;부척량
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.153-163
    • /
    • 1997
  • This paper is an experimental study of the chemical resistance of mortar which contains silica sand particles. The possible use of silica sand particles in the future as an admixture for improving chemical resistance of mortar is examined in mortar model experiments. The possibility of using mortar model its prediction models for the chemical resistance of concrete is examined. The results obtained are as follows. Since the experimental results from the chemical resistance tests based on the kinds and the amount of replaced admixture are similar to those from the concrete. mortar model could be used as a prediction model of chemical resistance of concrete.

Study on physical characteristics of Graphite-added bentonite grout for backfilling closed-loop groud heat exchanger (수직 밀폐형 지중 열교환기용 뒤채움재로서 흑연(Graphite)을 첨가한 벤토나이트 그라우트재의 물리적 특성연구)

  • Lee, Kang-Ja;Gil, Hu-Jeong;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Hyo-Pum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.179-187
    • /
    • 2009
  • Bentonite-based grouting has been popularly used to seal a borehole installed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because of its high swelling potential and low hydraulic conductivity. The bentonite-based grout, however, has relatively lower thermal conductivity than that of ground formation. Accordingly, it is common to add some additives such as silica sand to the bentonite-based grout for enhancing thermal performance. In this study, graphite is adapted to substitute silica sand as an addictive because graphite has very high thermal conductivity. The effect of graphite on the thermal conductivity of bentonite-based grouts has been quantitatively evaluated for seven bentonite grouts from different product sources. In addition, comparisons of viscosity between applications of graphite and silica sand as additives has been carried out. In conclusion, using graphite has thermal conductivity about three times higher than that of silica sand.

  • PDF

Effect of Particle Size Distribution of Sand on Compressive Strength of Calcium Silicate Brick (고압벽돌의 강도와 모래입도에 관한 연구)

  • 김병무;최명식;이경희
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.4
    • /
    • pp.193-198
    • /
    • 1978
  • Test-bricks were prepared from an artifically graded Ham Kang sand and a commercial CaO and autoclaved for 6 hours at $16 kg/cm^2$ pressure $(203^{\circ}C)$. Bricks were tested for compressive strength, free lime, saluble silica and amount of water absorption. Physical properties of bricks were very much depended on the size distribution of sand particle and the amount of soluble silica in bricks.

  • PDF

Experimental Analysis of Liquefaction Resistance Characteristics of Silica Sand Used in Earthquake Simulation Tests (국내 지진 모의시험에 이용되는 규사의 액상화 저항특성에 관한 실험적 분석)

  • Choi, Jaesoon;Jin, Yunhong;Baek, Woohyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.5-13
    • /
    • 2022
  • In this study, dynamic characteristics and liquefaction resistance characteristics of silica sand which is used to simulate sandy layer were conducted using the cyclic triaxial test according to the relative density difference. The difference in liquefaction resistance with the relative density was confirmed through the test results, which the relative density conditions were changed to 40%, 60%, and 80%, and the cyclic resistance ratio (CRR) curve of the silica sand was obtained. In addition, in order to examine the validity of the liquefaction resistance ratio (CRR) curve, artificial silica sand ground was created, and liquefaction potential was evaluated through the simple assessment method and the detailed assessment method, and the safety factors of each were compared.

Experimental Evaluation of Particulate-matter Filtration Performance of a Bottom Ash-Silica Sand Mixture (석탄 저회-규사 필터의 입자상물질 여과 성능 실험적 평가)

  • Lee, Dong-Hyun;Lee, Hong-Kyoung;Lee, Yun-Jae;An, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.41-47
    • /
    • 2022
  • Permeable pavement technology allows the penetration of rainfall into the roadbed, thereby reducing surface runoff and enhancing water quality. The water quality can be improved by adding a filter layer to the permeable pavement. This study analyzes the permeability performance and particulate-matter removal efficiency of a bottom ash-silica sand filter. The performances of five filters with bottom ash and silica sand as the basic materials were evaluated on particulate matter sized 60 ㎛ or smaller. The pure silica sand sample and pure bottom ash sample delivered an average removal efficiency of around 70%. The removal efficiency of the mixed sample was approximately 90%, exceeding the recommended reduction rate (80%) at non-point pollution reduction facilities. In future work, the filter performance should be further verified on permeable pavement.

Effects of Sand/Binder Ratios on the Mechanical Properties of Mortars Containing Fly ash and Silica fume

  • Park, Ki-Bong;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.777-780
    • /
    • 2005
  • The paper presents details of an investigation into the effect of sand content upon the strength and shrinkage of mortar. This strategy was to produces more durable strength mortar with less cement. Cement mortars containing $20\;wt.\;\%$ Class F fly ash, and/or $6\;wt.\;\%$ silica fume were prepared at a water/binder ratio of 0.45 and sand/binder ratios of 2.0, 2.5, 2.7, and 3.0. The increase in sand/binder ratio caused a decrease in the mortar flow. However, the sand/binder ratio did not affect the strength development. Drying shrinkage decreased with increasing the sand contents.

  • PDF