• Title/Summary/Keyword: silica nanoparticles

Search Result 263, Processing Time 0.03 seconds

Microstructure and Magnetic State of Fe3O4-SiO2 Colloidal Particles

  • Kharitonskii, P.V.;Gareev, K.G.;Ionin, S.A.;Ryzhov, V.A.;Bogachev, Yu.V.;Klimenkov, B.D.;Kononova, I.E.;Moshnikov, V.A.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.221-228
    • /
    • 2015
  • Colloidal particles consisted of individual nanosized magnetite grains on the surface of the silica cores were obtained by two-stage sol-gel technique. Size distribution and microstructure of the particles were analyzed using atomic force microscopy, X-ray diffraction and Nitrogen thermal desorption. Magnetic properties of the particles were studied by the method of the longitudinal nonlinear response. It has been shown that nanoparticles of magnetite have a size corresponding to a superparamagnetic state but exhibit hysteresis properties. The phenomenon was explained using the magnetostatic interaction model based on the hypothesis of iron oxide particles cluster aggregation on the silica surface.

High Velocity Impact Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabric

  • Park, Yurim;Baluch, Abrar H.;Kim, YunHo;Kim, Chun-Gon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.140-145
    • /
    • 2013
  • The development of high performance fabrics have advanced body armor technology and improved ballistic performance while maintaining flexibility. Utilization of the shear thickening phenomenon exhibited by Shear Thickening Fluids (STF) has allowed further enhancement without hindering flexibility of the fabric through a process of impregnation. The effect of STF impregnation on the ballistic performance of fabrics has been studied for impact velocities below 700 m/s. Studies of STF-impregnated fabrics for high velocity impacts, which would provide a transition to significantly higher velocity ranges, are lacking. This study aims to investigate the effect of STF impregnation on the high velocity impact characteristics of Kevlar fabric by effectively dispersing silica nanoparticles in a suspension, impregnating Kevlar fabrics, and performing high velocity impact experiments with projectile velocities in the range of 1 km/s to compare the post impact characteristics between neat Kevlar and impregnated Kevlar fabrics. 100 nm diameter silica nanoparticles were dispersed using a homogenizer and sonicator in a solution of polyethylene glycol (PEG) and diluted with methanol for effective impregnation to Kevlar fabric, and the methanol was evaporated in a heat oven. High velocity impact of STF-impregnated Kevlar fabric revealed differences in the post impact rear formation compared to neat Kevlar.

UV Blocking Effect of $TiO_2/SiO_2$ Composite Powders Prepared by Ultrasonic Spray Pyrolysis (초음파 분사 열분해 장치에서 제조된 $TiO_2/SiO_2$ 복합 분체의 UV 차단 효과)

  • Lee, Dong-Kyu;Lee, Jin-Hwa;Kim, Dong-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.281-288
    • /
    • 2005
  • The silica nanoparticles were used as support of catalyst, filling material, electronic assembler, thin film material, and sensor material. And, the titania nanoparticles were used as pigment, dielectric substance, sensor and photocatalyst. In this paper, the spherical composite particles of $TiO_2/SiO_2$with narrow size distribution and phase pure were synthesized by ultrasonic spray pyrolysis method from $TiOSO_4$ and colloidal silica solution. Using ultrasonic apparatus, this starting solution was vaporized to droplets, and these droplets were induced into tube furnace by carrier gas. The resulting composite powder was characterized by scanning electron microscopy, X-ray diffraction analysis, TG-DTA, in vitro sun protection factor(SPF) and BET surface area analysis.

Study the effect of machining process and Nano Sio2 on GFRP mechanical performances

  • Afzali, Mohammad;Rostamiyan, Yasser
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, the effect of Nano silica (SiO2) on the buckling strength of the glass fiber reinforced laminates containing the machining process causes holes were investigated. The tests have been applied on two status milled and non-milled. To promote the mechanical behavior of the fiber-reinforced glass epoxy-based composites, Nano sio2 was added to the matrix to improve and gradation. Nano sio2 is chosen because of flexibility and high mechanical features; the effect of Nanoparticles on surface serenity has been studied. Thus the effect of Nanoparticles on crack growth and machining process and delamination caused by machining has been studied. We can also imply that many machining factors are essential: feed rate, thrust force, and spindle speed. Also, feed rate and spindle speed were studied in constant values, that the thrust forces were studied as the main factor caused residual stress. Moreover, entrance forces were measured by local calibrated load cells on machining devices. The results showed that the buckling load of milled laminates had been increased by about 50% with adding 2 wt% of silica in comparison with the neat damaged laminates while adding more contents caused adverse effects. Also, with a comparison of two milling tools, the cylindrical radius-end tool had less destructive effects on specimens.

High Temperature Supercapacitor with Free Standing Quasi-solid Composite Electrolytes (독립형 반고체 복합 전해질을 적용한 고온 수퍼커패시터)

  • Kim, Dong Won;Jung, Hyunyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.121-128
    • /
    • 2019
  • Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At $175^{\circ}C$, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.

Deactivation of Porous Photocatalytic Particles During a Wastewater Treatment Process

  • Cho, Young-Sang;Nam, Soyoung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.185-197
    • /
    • 2019
  • Deactivation of porous photocatalytic materials was studied using three types of microstructured particles: macroporous titania particles, titania microspheres, and porous silica microspheres containing CNTs and $TiO_2$ nanoparticles. All particles were synthesized by emulsion-assisted self-assembly using micron-sized droplets as micro-reactors. During repeated cycles of the photocatalytic decomposition reaction, the non-dimensionalized initial rate constants (a) were estimated as a function of UV irradiation time (t) from experimental kinetics data, and the results were plotted for a regression according to the exponentially decaying equation, $a=a_0\;{\exp}(-k_dt)$. The retardation constant ($k_d$) was then compared for macroporous titania microparticles with different pore diameters to examine the effect of pore size on photocatalytic deactivation. Nonporous or larger macropores resulted in smaller values of the deactivation constant, indicating that the adsorption of organic materials during the photocatalytic decomposition reaction hinders the generation of active radicals from the titania surface. A similar approach was adopted to evaluate the activation constant of porous silica particles containing CNT and $TiO_2$ nanoparticles to compare the deactivation during recycling of the photocatalyst. As the amount of CNTs increased, the deactivation constant decreased, indicating that the conductive CNTs enhanced the generation of active radicals in the aqueous medium during photocatalytic oxidation.

Application of SiO2 nanocomposite ferroelectric material in preparation of trampoline net for physical exercise

  • Zhanguo Su;Junyan Meng;Yiping Su
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.355-362
    • /
    • 2023
  • Physical exercise, especially intense exercise and high intensity interval training (HIIT) by trampoline, can lead to muscle injuries. These effects can be reduced with intelligent products made of nanocomposite materials. Most of these nanocomposites are polymers reinforced with silicon dioxide, alumina, and titanium dioxide nanoparticles. This study presents a polymer nanocomposite reinforced with silica. As a result of the rapid reaction between tetraethyl orthosilicate and ammonia in the presence of citric acid and other agents, silica nanostructures were synthesized. By substituting bis (4-amino phenoxy) phenyl-triptycene in N, N-dimethylformamide with potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C, the diamine monomer bis (4-amino phenoxy) phenyl-triptycene is prepared. We synthesized a new polyaromatic (imide) with triptycene unit by sol-gel method from aromatic diamines and dianhydride using pyridine as a condensation reagent in NMP. PI readily dissolves in solvents and forms robust and tough polymer films in situ. The FTIR and NMR techniques were used to determine the effects of SiO2 on the sol-gel process and the structure of the synthesized nanocomposites. By using a simultaneous thermal analysis (DTA-TG) method, the appropriate thermal operation temperature was also determined. Through SEM analysis, the structure, shape, size, and specific surface area of pores were determined. Analysis of XRD results is used to determine how SiO2 affects the crystallization of phases and the activation energy of crystallization.

Study on the Synthesis of Hydrophobic Silica and Its Application for Gas Barrier Film (소수성 실리카의 제조 및 가스차단성 필름으로의 응용에 관한 연구)

  • Yang, Kyeong Min;Chang, Mi Jung;Nam, Kwang Hyun;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.554-558
    • /
    • 2017
  • In order to achieve a hydrophobic surface of silica, we reacted silica nanoparticles with hexamethyldisilazane (HMDS) under various reaction conditions. Modification of the surface of silica with organic materials was confirmed by the thermogravity and elemental analysis. The modified silica displayed nearly the same morphology as to the pristine silica. The reaction of 20 g of HMDS with 1 g of silica in decalin at $200^{\circ}C$ for 6 hours was found to be the optimum reaction condition in terms of the dispersity in toluene and the surface roughness of composite films. Oxygen permeation studies of the composite film demonstrated that the modified silica enhanced a gas barrier performance.

Study of Color Evolution by Silica Coating and Etching based Morphological Control of α-FeOOH (실리카 코팅과 에칭에 의한 α-FeOOH의 색상변화 연구)

  • Lee, NaRi;Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.379-383
    • /
    • 2018
  • Silica is used in shell materials to minimize oxidation and aggregation of nanoparticles. Particularly, porous silica has gained attention because of its performance in adsorption, catalysis, and medical applications. In this study, to investigate the effect of the density of the silica coating layer on the color of the pigment, we arbitrarily change the structure of a silica layer using an etchant. We use NaOH or $NH_4OH$ to etch the silica coating layer. First, we synthesize ${\alpha}-FeOOH$ for a length of 400 nm and coat it with TEOS to fabricate particles with a 50 nm coating layer. The coating thickness is then adjusted to 30-40 nm by etching the silica layer for 5 h. Four different shapes of ${\alpha}-FeOOH$ with different colors are measured using UV-vis light. From the color changes of the four different shapes of ${\alpha}-FeOOH$ features during coating or etching, the $L^*$ value is observed to increase and brighten the overall color, and the $b^*$ value increases to impart a clear yellow color to the pigment. The brightest yellow color was that coated with silica; if the sample is etched with NaOH or $NH_4OH$, the $b^*$ value can be controlled to study the yellow colors.

Submicrospheres as Both a Template and the Catalyst Source. Silica Submicro-reactor Dotted with Palladium Nanoparticles as Catalysts

  • Kim, Sung Min;Noh, Tae Hwan;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1127-1130
    • /
    • 2013
  • Formation of the monodisperse submicrospheres consisting of ionic palladium(II) complexes, $[(Me_4en)Pd(L)]_2(X)_4$($Me_4en$ = N,N,N',N'-tetramethylethylenediamine; L = bis(4-(4-pyridylcarboxyl)phenyl)methane; $X^-=BF_4{^-}$ and $ClO_4{^-}$), has been carried out without any templates or additives. The submicrospheres were coated with silicates, and then calcined in air at $550^{\circ}C$ for 1 h, to efficiently form hollow-spherical $SiO_2$ submicro-reactors dotted with palladium(0) nanoparticles (PdNPs). That is, the submicrospheres act as both a template and a source of the palladium metal nanoparticles. The submicro-reactors containing nano-catalysts have been characterized by means of SEM, TEM, and XPS. Notably, the reactors were proved to be very effective for Suzuki-Miyaura cross-coupling and hydrogenation reactions.