• 제목/요약/키워드: silica inorganic binder

검색결과 26건 처리시간 0.03초

3성분계 무기결합재의 양생방법에 따른 강도특성 (Strength Characteristic according to the Curing Method of the Ternary System Inorganic Binder)

  • 이진우;이윤성;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.33-34
    • /
    • 2013
  • Recently, as the policy of state that it is the low carbon green growth is promoted, the effort for reducing the CO2 gas generation ejected from the construction industry in the cement production is continued. That is, the method using the mineral admixtures including the silica fume and red mud, silica fume and etc. it is the industrial byproduct with the method solving the exhaustion problem of the environmental contamination settlement and natural resources, the great quantity as the cement substitute material is examined. Accordingly, in this research, the strength characteristic of the curing body differentiating the curing method of the ternary system inorganic binder using the blast furnace slag and red mud, silica fume and etc. as the cement substitute material tried to be examined.

  • PDF

3성분계 무기결합재의 80℃ 수중양생 시간변화에 따른 강도특성 (Strength Characteristic according to the 80℃ Water Curing Time Variation of the Ternary System Inorganic Binder)

  • 이진우;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.100-101
    • /
    • 2014
  • The global warming because of the CO2 emission and solution about this emerge as the international enviroment problem. Particularly, it is the absolutely it is needed for reducing the CO2 in the cement industry and harmful material actual condition. And the construction of home and abroad and material manufacturers tries for the technology development for the carbon dioxide and harmful material reduction which the portland cement in manufacture is usually emitted along with the increase of concerns about the environment-friendly concrete and panel. Therefore, in this research, the compressive strength of the inorganic binder and flexural strength tries to be measured in order to draw the inappropriate high temperature cure time of the ternary system inorganic binder using the blast furnace slag, red mud, silica fumewhich is the industrial byproduct with the cement substitute material, and etc.

  • PDF

실리카 베이스 무기 바인더 기반의 TiO2 코팅액의 제조 및 특성 평가 (Fabrication and characteristics of TiO2 coating solution with silica-based inorganic binder)

  • 강우규;김혜진;김진호;황광택;장건익
    • 한국결정성장학회지
    • /
    • 제29권2호
    • /
    • pp.71-76
    • /
    • 2019
  • 자동화 시스템이 일반화되면서 제품 관리를 위한 라벨지(label)의 수요는 증가하고 있으며, 다양한 환경에서 사용할 수 있는 기능성 라벨지 개발이 빠르게 진행되고 있다. 인쇄회로기판의 경우 제작 과정에서 $300^{\circ}C$ 이상의 리플로우 솔더링 공정과 여러 차례의 세정 공정을 거치기 때문에 열적 화학적 안정성을 갖는 바코드 라벨지(barcode label)가 사용되고 있으나 황변(yellowing) 현상 발생으로 인한 인식률 저하의 문제가 발생하고 있다. 본 연구에서는 실리카 무기 바인더와 이산화티탄 백색안료를 사용한 복합 코팅층을 개발하고, 열적 화학적 안정성을 확보한 기능성 라벨지 연구를 진행하였다. 졸-겔 공정으로 제조한 실리카 무기 바인더는 기재(substrate)로 사용하는 폴리이미드 필름과 우수한 밀착성과 내마모성 특성을 갖는 것으로 확인하였다. 또한 이산화티탄 백색안료와 혼합하여 폴리이미드 필름에 백색의 코팅층을 제조할 수 있었으며, 복합 코팅층은 $400^{\circ}C$ 이상의 고온에서도 우수한 백색도와 광택도를 특성을 유지하는 것을 알 수 있었다. 또한 산성(pH 1.6)과 염기성(pH 13.6) 세정제를 통한 화학 처리 후에도 백색도와 광택도 변화가 일어나지 않는 우수한 화학적 안정성을 확인하였다.

Effects of SiC Particle Size and Inorganic Binder on Heat Insulation of Fumed Silica-based Heat Insulation Plates

  • Jo, Hye Youn;Oh, Su Jung;Kim, Mi Na;Lim, Hyung Mi;Lee, Seung-Ho
    • 한국세라믹학회지
    • /
    • 제53권4호
    • /
    • pp.386-392
    • /
    • 2016
  • Heat insulation plates of fumed silica were prepared by mixing fumed silica, SiC powder and chopped glass fiber by a high speed mixer followed by pressing of the mixture powder in a stainless steel mold of $100{\times}100mm$. Composition of the plates, particle size of SiC, and type of inorganic binder were varied for observation of their contribution to heat insulation of the plate. The plate was installed on the upper portion of an electric furnace the inside temperature of which was maintained at $400^{\circ}C$ and $600^{\circ}C$, for investigation of heat transfer through the plate from inside of the electric furnace to outside atmosphere. Surface temperatures were measured in real time using a thermographic camera. The particle size of SiC was varied in the range of $1.3{\sim}17.5{\mu}m$ and the insulation was found to be most excellent when SiC of $2.2{\mu}m$ was incorporated. When the size of SiC was smaller or larger than $2.2{\mu}m$, the heat insulation effect was decreased. Inorganic binders of alkali silicate and phosphate were tested and the phosphate was found to maintain the heat insulation property while increasing mechanical properties.

실리카-이산화티탄 복합 코팅층의 열적, 화학적 안정성 및 인쇄적성 평가 (Printability of Thermally and Chemically Stable Silica-Titanium Dioxide Composite Coating Layer)

  • 김혜진;한규성;황광택;남산;김진호
    • 한국재료학회지
    • /
    • 제29권10호
    • /
    • pp.631-638
    • /
    • 2019
  • As automation systems become more common, there is growing interest in functional labeling systems using organic and inorganic hybrid materials. Especially, the demand for thermally and chemically stable labeling paper that can be used in a high temperature environment above $300^{\circ}C$ and a strong acid and base atmosphere is increasing. In this study, a composite coating solution for the development of labeling paper with excellent thermal and chemical stability is prepared by mixing a silica inorganic binder and titanium dioxide. The silica inorganic binder is synthesized using a sol-gel process and mixed with titanium dioxide to improve whiteness at high-temperature. Adhesion between the polyimide substrate and the coating layer is secured and the surface properties of the coating layer, including the thermal and chemical stability, are investigated in detail. The effects of the coating solution dispersion on the surface properties of the coating layer are also analyzed. Finally, it is confirmed that the developed functional labeling paper showed excellent printability.

Improving Strength in Casting Mold by Control of Starting Material and Process

  • Cho, Geun-Ho;Kim, Eun-Hee;Jung, Yeon-Gil
    • 한국세라믹학회지
    • /
    • 제53권5호
    • /
    • pp.541-547
    • /
    • 2016
  • In developing high temperature molds with advantages of the sand and precision (investment) castings, mechanical properties of the mold were improved through homogeneous coating of starting powders with an inorganic binder and improvement of fabrication process. Beads with mullite composition were employed for properties of the mold under high temperature, which was compared with artificial sands. Precursors of silica and sodium oxide were used as starting materials for an inorganic binder to achieve homogeneous coating on the starting powders. Strength was enhanced by the glass phase converted from the inorganic binder through heat treatment process. Also, two kinds of process, wet and dry processes, were incorporated to prepare mold specimens. Consequently, fabrication process of the mold with superior strength and high temperature applicability, compared with the previous molds for sand casting, could be suggested through control of the starting material and enhancement of the vitrification efficiency.

3성분계 무기결합재 패널크기에 따른 건조수축 특성 (Dry Shrinkage Characteristic according to the Ternary System Inorganic Binder Panel Size)

  • 이진우;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.144-145
    • /
    • 2014
  • In the cement,that is the main materials of the panel, as to the cofired process, more than 1,300 enormous energies is consumed, in addition the greenhouse gas generated in the process of producing the cement occupies 6.3% of the country whole emission quantity. And the carbon dioxide of about 0.8 ton is the cement ejected in 1 production. Accordingly, the panel utilizing the industrial byproduct is developed. Accordingly, this research is the experiment which makes the individual size into the environment-friendly inorganic binder panel and by using the blast furnace slag, which is the industrial byproduct with the cement substitute material red mud, silica fume, and etc. looks at the dry shrinkage. The length variation in which the panel which is 450 with the dry shrinkage result of measurement, thickness 12mm, and size 450mm is the smallest was shown.

  • PDF

잔골재 치환율별 저탄소 무기결합재를 사용한 모르타르의 유동 및 강도 특성에 관한 실험적 연구 (An Experimental Study on the Flowing and Strength Properties of Mortar using Low Carbon Inorganic Binder by Sand Replacement Ratio)

  • 배상우;이윤성;이강필;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.63-64
    • /
    • 2011
  • This study is about the mortar in which fine aggregate is substituted by low-carbon eco-friendly inorganic composite prepared by addition of alkali accelerator in industrial by-products such as blast furnace slag, red mud and silica fume as a replacement for cement. Results of experiments on flow and strength properties in mortar of inorganic composite according to replacement rate of fine aggregate showed that amount of air and table flow decreased as replacement rate of fine aggregate about inorganic composite got higher. Also, it's shown that the compressive strength was the highest at replacement rate 50% of fine aggregate about inorganic composite.

  • PDF

PVA섬유혼입 무기결합재의 수중양생온도에 따른 강도특성 (Strength Characteristic according to the Water Curing Temperature of the Inorganic Binder Mixed PVA Fiber)

  • 이진우;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.194-195
    • /
    • 2013
  • Recently, it is the tendency that the CO2 gas generated in the manufacturing process is increased every year in case of the portland cement used in the most of constructions and civil engineering field. The method that uses the mineral admixtures as the cement substitute material in order to be more serious and as much as it occupies 7% of the global CO2 gas outlet amount such as 1 ton produces the cement and it ejects the CO2 gas of 0.4~1.0 ton, etc conclude this problem is examined. Therefore, PVA fiber was mixed into the inorganic binder recycling the blast furnace slag, which is the industrial byproduct with the purpose studying the Geo polymer which doesn't use the cement at all silica fume, red mud, and etc. In addition, the water curing temperature was differentiated and the strength characteristic of the curing body tried to be examined.

  • PDF

유-무기 하이브리드 화합물과 Particle-Binder 공정을 이용한 소수성 코팅막 제조 (Preparation of Hydrophobic Coating Layers Using Organic-Inorganic Hybrid Compounds Through Particle-to-Binder Process)

  • 황승희;김효원;김주영
    • 접착 및 계면
    • /
    • 제21권4호
    • /
    • pp.143-155
    • /
    • 2020
  • Sol-Gel 공정을 통해서 제조되는 유-무기 하이브리드 화합물들은 방청 코팅, 방빙 코팅(Anticing), 자가 세정 코팅, 반사 방지 코팅 등과 같은 기능성 코팅 재료로 널리 사용되어져 왔다. 특히 소수성 코팅 표면을 제조하기 위해서는 코팅표면의 표면에너지가 낮고 코팅 표면의 조도를 제어가 요구된다. 표면에너지와 표면 조도를 조절하는 전형적인 공정은 in-situ fabrication 공정, 'Pre-fluorinating/Post-roughening', 'Pre-roughening/ Post-fluorinating이다. 본 연구에서는 in-situ fabrication 공정인 Particle-Binder 공정을 이용해서 소수성 코팅표면을 제조하였다. 3관능기 유기실란화합물과 불소 함유 유기실란 화합물과의 가수분해 및 축합반응을 통해 제조된 불소함유 유-무기 하이브리드를 바인더로 사용하여서 무기물 나노입자와 혼합하여 소수성 코팅액을 제조하고 유리 기재 위에 스핀코팅 후 열건조하여서 코팅막을 제조하였다. 바인더인 유-무기 하이브리드 화합물의 불소 함유 실란화합물의 첨가량, 첨가순서, 무기물 나노입자 첨가량에 따른 코팅막의 물성 변화를 조사하였다. 분석결과 불소 함량이 10 wt%인 유-무기 하이브리드 화합물(GPTi-HF10)을 바인더로 사용하여서 제조된 코팅막이 가장 소수성이 우수하였으며 수접촉각은 (107.52 ± 1.6°), 이 바인더와 무기물 나노입자의 무게비가 1:3인 경우(GPTi-HF10-MS 3.0)에 가장 높은 수접촉각(130.84±1.99°)을 나타내었다.