• Title/Summary/Keyword: silanization

Search Result 46, Processing Time 0.031 seconds

Effect of surface treatment of FRC-Post on bonding strength to resin cements (FRC-포스트의 표면처리가 레진시멘트와의 접착력에 미치는 영향)

  • Park, Chan-Hyun;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • Objectives: The purpose of this study was to evaluate the effect of surface treatment of FRC-Post on bonding strength to resin cements. Materials and Methods: Pre-surface treated LuxaPost (DMG), Rely-X Fiber Post (3M ESPE) and self adhesive resin cement Rely-X Unicem (3M ESPE), conventional resin cement Rely-X ARC (3M ESPE), and Rely-X Ceramic Primer (3M ESPE) were used. After completing the surface treatments of the posts, posts and resin cement were placed in clear molds and photo-activation was performed. The specimens were sectioned perpendicular to the FRC-Post into 2 mm-thick segments, and push-out strength were measured. The results of bond strength value were statistically analyzed using independent samples t-test and oneway ANOVA with multiple comparisons using Scheffe's test. Results: Silanization of posts affect to the bond strength in LuxaPost, and did not affect in Rely-X Fiber Post. Rely-X ARC showed higher value than Rely-X Unicem. Conclusions: Silanization is needed to enhance the bond strength between LuxaPost and resin cements.

Tuning Hydrophobicity of TiO2 Layers with Silanization and Self-assembled Nanopatterning

  • Nghia, Van Trong;Lee, Young Keun;Lee, Jaesang;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.291-291
    • /
    • 2013
  • The wettability of TiO2 layers is controlled by forming highly ordered arrays of nanocones using nanopatterning, based on self-assembly and dry etching. Nanopatterning of TiO2 layers is achieved via formation of self-assembled monolayers of SiO2 spheres fabricated using the Langmuir-Blodgett technique, followed by dry etching. Compared to a thin film TiO2 layer, the nanopatterned TiO2 samples show a smaller static water contact angle, where the water contact angle decreases as the etching time increases, which is attributed to the Wenzel equation. When TiO2 layers are coated by 1H,1H,2H,2H-perfluorooctyltrichlorosilane, we observed the opposite behavior, exhibiting superhydrophobicity (up to contact angle of $155^{\circ}$) on the nanopatterned TiO2 layers. Self-assembled nanopatterning of the TiO2 layer may provide an advanced method for producing multifunctional transparent layers with self-cleaning properties.

  • PDF

Effect of Surface Treatments of on the Microtensile Bond Strength of Resin Composite to Composite after aging Conditions (시효처리 후의 컴포지트에 대한 레진 컴포지트의 미세 인장 결합강도에 표면처리가 미치는 효과)

  • Yoo, Min-Jin;Her, Mi-Ja;Kim, Hee-Lyang;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.339-347
    • /
    • 2010
  • Enhancement of bond strength between new and old composite usually requires increasing the surface roughness to promote mechanical interlocking. This study evaluated the effect of different surface treatments on repair bond strength of resin composite after aging condition. Air abrasion with Al2O3, chairside silicacoating, and silanization provided higher resin-resin bond strength values compared to control group and HF group. Air abrasion is necessary to repair a resin restoration and additional application of silane seems to have good effects on bond strength.

Study of Wettability Effect on Pressure Drop and Flow Pattern of Two-Phase Flow in Rectangular Microchannel (사각 마이크로채널 내의 2 상유동 압력강하와 유동양식에 대한 젖음성의 영향에 대한 연구)

  • Choi, Chi-Woong;Yu, Dong-In;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.939-946
    • /
    • 2009
  • Wettability is a critical parameter in micro-scale two-phase system. Several previous results indicate that wettability has influential affect on two-phase flow pattern in a microchannel. However, previous studies conducted using circular microtube, which was made by conventional fabrication techniques. Although most applications for micro thermal hydraulic system has used a rectangular microchannel, data for the rectangular microchannel is totally lack. In this study, a hydrophilic rectangular microchannel was fabricated using a photosensitive glass. And a hydrophobic rectangular microchannel was prepared using silanization of glass surfaces with OTS (octa-dethyl-trichloro-siliane). Experiments of two-phase flow in the hydrophilic and the hydrophobic rectangular microchannels were conducted using water and nitrogen gas. Visualization of twophase flow pattern was carried out using a high-speed camera and a long distance microscope. Visualization results show that the wettability was important for two-phase flow pattern in rectangular microchannel. In addition, two-phase frictional pressure drop was highly related with flow patterns. Finally, Two-phase frictional pressure drop was analyzed with flow patterns.

Shear bond strength of indirect composite material to monolithic zirconia

  • Sari, Fatih;Secilmis, Asli;Simsek, Irfan;Ozsevik, Semih
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.267-274
    • /
    • 2016
  • PURPOSE. This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS. Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (${\alpha}$=.05). RESULTS. Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION. Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia.

Biodiesel Production from Canola oil Using the Immobilized Enzyme (고정화 효소를 이용한 Canola oil의 바이오디젤 전환)

  • Jang, Myunggwi;Kim, Deogkeun;Lee, Jinsuk;Park, Soonchul;Kim, Seungwook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.251.1-251.1
    • /
    • 2010
  • 바이오디젤은 동식물성 기름과 메탄올의 트랜스에스테르화 반응에 의해 생산되는 지방산메틸에스테르(FAME, fatty acid methyl esters)로서, 트랜스에스테르화 공정에는 KOH, NaOH, $NaOCH_3$등의 균질계 화학촉매를 이용한 방법, 무촉매 공정인 초임계 메탄올 이용 방법, 그리고 효소촉매를 이용한 방법이 있다. 초임계 공정은 에너지 소비와 장치비가 커서 경제성이 떨어지는 것으로 보고되며 화학촉매 공정은 반응 효율이 높다는 장점을 가지고 있지만, 반응 및 정제단계가 복잡하고 정제과정에 폐수를 발생시키는 문제점을 가지고 있다. 고정화 효소를 사용하는 효소 공정은 에너지 비용의 절감, 후 처리 공정의 단순화, 고 순도의 글리세롤을 얻을 수 있는 장점이 있지만, 반응 속도가 느리고 효소 가격이 비싸다는 단점이 있어 현재까지 상업화되지 못하고 있다. 반응속도가 높고 재사용이 가능한 효소 촉매 공정 개발을 위해 본 연구에서는 Candida rugosa, Rizhopus oryzae 2종을 실리카에 동시 고정화하였다. 고정화 Lipase의 제조는 실리카겔을 과산화수소를 이용하여 전처리를 하고 Acetone과 3-APTES의 혼합용액을 첨가한 후 실리카겔과 (silanization)을 진행 하였다. 그리고 glutaraldehyde를 첨가 하여 공유 결합을 형성 한 후에 증류수를 사용하여 실리카겔을 회수하여 lipase(Rizhopus oryzae, Candida rugosa 10% 용액)를 고정화 하였다. 고정화 효소의 효소 활성을 측정한 결과 3000-3500 Unit(${\mu}mol/g{\cdot}min$)으로 측정되었다. 제조된 고정화 효소를 이용하여 Canola Oil을 바이오디젤로 전환하는 실험을 진행하였으며 생성물로부터 고정화 효소를 분리한 후에 상층의 에스테르층을 취하여 수세한 뒤 원심분리하여 FAME 함량을 측정한 결과 83%의 바이오디젤을 얻을 수 있었다. 그리고 효소 촉매 트랜스에스테르화 반응의 Enzyme, Water, Methanol 투입량의 반응 변수들에 대하여 반응표면분석법(Response Surface Methodology)을 적용하여 최적 반응조건을 도출하는 연구를 수행하였다.

  • PDF

Performance Improvement of Epoxy Resin System by the Filler Reformation (충진제 개질을 통한 에폭시복합체의 성능개선)

  • Yi, Dong-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.130-135
    • /
    • 2010
  • In this study, the performance improvement of epoxy resin system had been tried by the improvement of particle size distribution and globularization of filler using polymerization method. From the results of particle size distribution measurement, the polydispersity value of reformed filler was 1.04 and that of silica flour before reformation was 2.6, it could be confirmed that the particle size uniformity of reformed filler had been improved greatly and the shape of particle was globular. Compatibility between monomer and silica was improved remarkably with the silanization pretreatment of silica flour. From the results of degree of crosslinking test, it could be confirmed that the binding structure of reformed filler was 3-dimensional net structure. And it could be also confirmed that the fluidness was improved at the casting of epoxy resin with reformed filler. From the above results, it could be concluded that the reformation of filler with the improvement of particle size distribution and globularization was very successful method to improve the performance of cast epoxy resin system.

Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia

  • Han, In-Hae;Kang, Dong-Wan;Chung, Chae-Heon;Choe, Han-Cheol;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • PURPOSE. This study compared the effect of three intraoral repair systems on the bond strength between composite resin and zirconia core. MATERIALS AND METHODS. Thirty zirconia specimens were divided into three groups according to the repair method: Group I-CoJet$^{TM}$ Repair System (3M ESPE) [chairside silica coating with $30{\mu}m$ $SiO_2$ + silanization + adhesive]; Group II-Ceramic Repair System (Ivoclar Vivadent) [etching with 37% phosphoric acid + Zirconia primer + adhesive]; Group III-Signum Zirconia Bond (Heraus) [Signum Zirconia Bond I + Signum Zirconia Bond II]. Composite resin was polymerized on each conditioned specimen. The shear bond strength was tested using a universal testing machine, and fracture sites were examined with FE-SEM. Surface morphology and wettability after surface treatments were examined additionally. The data of bond strengths were statistically analyzed with one-way ANOVA and Tamhane post hoc test (${\alpha}$=.05). RESULTS. Increased surface roughness and the highest wettability value were observed in the CoJet sand treated specimens. The specimens treated with 37% phosphoric acid and Signum Zirconia Bond I did not show any improvement of surface irregularity, and the lowest wettability value were found in 37% phosphoric acid treated specimens. There was no significant difference in the bond strengths between Group I ($7.80{\pm}0.76$ MPa) and III ($8.98{\pm}1.39$ MPa). Group II ($3.21{\pm}0.78$ MPa) showed a significant difference from other groups (P<.05). CONCLUSION. The use of Intraoral silica coating system and the application of Signum Zirconia Bond are effective for increasing the bond strength of composite resin to zirconia.

Characteristics of Silane Treated Graphene Filled Nanocomposites Exposed to Low Earth Orbit Space Environment (저궤도 우주환경하의 실란처리된 그래핀 첨가 나노 복합재료의 물성특성)

  • Noh, Jae-Young;Jin, Seung-Bo;Kim, Chun-Gon
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.130-135
    • /
    • 2015
  • This study investigates the property of graphene filled polymer nanocomposites in LEO(Low Earth orbit) environment conditions. In order to improve compatibility with polymer matrices and resistance of carbon material against AO(Atomic oxygen) attack, silanization of graphene oxide with organosilane was carried out. The corresponding moieties were characterized through X-ray photoelectron spectroscopy (XPS). Graphene oxide filled nanocomposites were prepared using solution based processing methods. The sets of specimen series were tested in an accelerated LEO simulated space environment facility. Graphene oxide and silane treated graphene oxide reinforced nanocomposites were compared with neat epoxy. The comparison revealed that the silane treated graphene filled polymer composite shows inherent resistance against atomic oxygen attack while the lack of silane treatment resulted in a reduction in performance.

Quantitative Analysis of Grafted Methacrylate Groups by Michael Addition Reaction between Primary and Secondary Amino Groups on the Silica Nanoparticle Surface with 3-(Acryloyloxy)-2-Hydroxypropyl Methacrylate (실리카 나노 입자 표면에 결합된 1차 및 2차 아미노기와 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate의 마이클 부가 반응에 의해 도입되는 메타크릴레이트기의 정량적 분석)

  • Lee, Sangmi;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.300-310
    • /
    • 2015
  • In this study, we modified silica nanoparticles with N-[3-(trimethoxysilyl)propyl]ethylenediamine (TPED) silane coupling agent, which has one primary and one secondary amino groups in a molecule, to introduce amino groups on the silica surface. After modification of silica, we used 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) to introduce methacrylate groups by Michael addition reaction. We found about 30% of N-H groups on the TPED modified silica surface reacted with acrylate groups of AHM compared to about 85% of reaction between N-H groups of pure TPED with acrylate groups of pure AHM. This lower degree of Michael addition reaction for heterogeneous reaction between N-H groups on the solid TPED modified silica and liquid AHM compared to homogeneous reaction between pure liquid TPED and pure liquid AHM may be caused by lower mobility of grafted amino groups of TPED moiety and higher steric hindrance caused by solid silica particles.