• Title/Summary/Keyword: significant wave period

Search Result 221, Processing Time 0.026 seconds

Comparative Analysis of Significant Wave Height and Wave Period Observed from Ocean Data and Drifting Buoys (해양기상부이와 표류부이에서 관측된 유의파고 및 파주기 비교 분석)

  • Hyeong-Jun Jo;Baek-Jo Kim;Reno Kyu-Young Choi;Min Roh;KiRyong Kang;Chul-Kyu Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.11
    • /
    • pp.841-852
    • /
    • 2023
  • In this study, the significant wave height and wave period of a specially designed observation system that connected two drifting buoys to an ocean data buoy was observed for 23 days from February 7 to 29, 2020, and the results were compared and analyzed. The results indicated that, in comparison to the ocean data buoy, the drifting buoy exhibited greater variability in significant wave height over shorter time intervals. The wave period of the ocean data buoy also appeared longer than that of the drifting buoy. The greater the observed significant wave height and wave period from both the ocean data and drifting buoys, the more pronounced the differences between the two observation instruments become. Moreover, the study revealed that the disparity in observation methods between the ocean data and drifting buoys did not significantly affect the significant wave height characteristics, as long as the period remained unchanged for up to half of the observation time.

A Study on the Characteristics of Large Amplitude Ocean Waves (대진폭 해양파의 특성에 대한 연구)

  • Kim, Do-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.61-67
    • /
    • 2009
  • In this paper time series wave data which contain a freak wave is investigated. Various wave characteristics are compared between wave data with a freak wave and without. Among 24 hour wave data measured in the Yura Sea, two adjacent 30 min wave data with and without a freak wave are examined intensively. It is seen that the highest waves do not have the longest wave period. The wave period of the longest period waves is a little longer than the average wave period and much shorter than the significant wave period. Although the sea state is quite high, the Rayleigh distribution fits well to the probability of wave height. The characteristics of the wave spectra do not change much, but the nonlinearity increases for the wave data with a freak wave. The significant wave height without a freak wave is larger than that with a freak wave. Hence, the higher significant wave height does not always increase the probability of the occurrence of the freak waves.

  • PDF

Characteristics of long-period swells measured in the near shore regions of eastern Arabian Sea

  • Glejin, Johnson;Kumar, V. Sanil;Amrutha, M.M.;Singh, Jai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.312-319
    • /
    • 2016
  • Measured wave data covering two years simultaneously at 3 locations along the eastern Arabian Sea reveals the presence of long-period (peak wave period > 18 s) low-amplitude waves (significant wave height < 1 m) and the characteristics of these waves are described in this article. In a year, 1.4-3.6% of the time, the low-amplitude long-period swells were observed, and these waves were mainly during the nonmonsoon period. The wave spectra during these long-period swells were multi-peaked with peak wave period around 18.2 s, the secondary peak period around 13.3 s and the wind-sea peak period at 5 s. The ratio of the spectral energy of the wind-sea peak and the primary peak (swell) was slightly higher at the northern location (0.2) than that at the southern location (0.15) due to the higher wind speed present at the northern location.

A Methodology of Estimating Design Waves for the Operable Harbor Condition Using Long-term Wave Data (장기 파랑측정자료를 이용한 평상파 산정 방법론)

  • Ahn Kyungmo;Chun Je Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.178-189
    • /
    • 2004
  • For designing a reliable harbor, a methodology for estimating design waves of 97.5% operable harbor condition is suggested using long-term wave data. For a practical application of the methodology, a marine police harbor was selected as a site. Wave data used were collected from February 1993 to December 2003 at Jodo wave gage station in front of Pusan harbor. Joint distributions of significant wave height and significant wave period for specified wave directions were obtained and used to feed as input waves for parabolic mild-slope wave model. Results showed that input waves with significant wave height of 1.75 m, significant wave period off sec and wave direction E yield design waves height of 1.06 m at the site of interests, which is a 97.5% operable harbor condition. Wind waves generated inside harbor showed to be no effect on the design wave condition. Swells propagated from deep water into harbor are shown to be dominant effects on the design waves of operable harbor condition.

Simulation of a Non-Directional Wave Spectrum Analysis with Welch's Method

  • Park, Soo-Hong
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.146-149
    • /
    • 2008
  • Simulation and signal conditioning on the time domain surface elevation records are conducted to verify the proposed Welch's method in non-directional ocean wave spectrum analysis. These spectrum data are further conditioned to provide wave characteristic that better describe the sea states. Comparison of significant wave height and zero crossing period between the proposed method and a reference toolkit are presented.

Evaluation of the Harbor Operation Rate Considering Long Period Waves (장주기파를 고려한 항만 가동율의 평가)

  • 김규한
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.21-26
    • /
    • 2002
  • In this study, the characteristics of long period waves are analyzed by field observation at Sokcho harbor on the eastern coast of Korea. firstly. the pressure data obtained from field observation are transformed into water surface elevations and the wave by wave analysis is applied to the observed wave data. also, we select long period waves by setting up the range 30-200sec, and suggest the relationship between ordinary waves and long period waves using the concept of the significant wave height. and, we examine the effects oft he long period waves on the rate of the harbor operation. The observation results demonstrate that the long period waves with heights of 1.2-14.6cm and periods of 35.8-162sec exist at Sokcho harbor. also, we found the rates of harbor operation based on long period waves are 61.8%-99.5% lower than the usual rates of 93.8%-100%.

Characteristics on the response of the stern trawler according to the state of its operation (선미트롤어선의 운항 형태에 따른 거동 특성)

  • PARK, Chi-Wan;KIM, Jong-Wha;KIM, Hyong-Seok;KANG, Il-Kwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.4
    • /
    • pp.339-346
    • /
    • 2016
  • The aim of this research was to the experimental data using statistical and spectral analyzing method to get the motion reponses of a stern trawler in operation states such as drifting, sailing and trawling according to the wave height. In drifting, the significant and the maximum valuer of roll in beam sea increased according to the wave height, but those of pitch decreased. The response and the period of peak of roll in beam sea were increased, but those of pitch decreased. In navigation, the significant and maximum values of roll increased remarkably according to the wave height, but those of pitch changed a little. The response of roll was highest in quartering sea, beam sea and then following sea, but those of pitch was highest in bow sea, head sea and then beam sea in the order of all wave heights. The period of peak of roll due to the wave height and the wave direction changed from 3.8 to 9.9 seconds, and those of pitch changed from 3.3 to 10.4 seconds. In trawling, the significant and maximum values of roll increased a little according to the wave height, but those of pitch increased significantly. The response of roll was highest in beam sea, bow sea and then quartering sea, but those of pitch was highest in head sea, following sea, and then beam sea in the order. The period of peak of roll due to the wave height and the direction changed from 6.6 to 10.9 seconds, and those of pitch changed from 6.7 to 11.2 seconds.

Analysis of Long-Term Wave Distribution at Jeju Sea Based on SWAN Model Simulation (SWAN모델을 이용한 제주해역 장기 파랑분포 특성 연구)

  • Ryu Hwangjin;Hong Keyyong;Shin Seung-Ho;Song Museok;Kim Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.137-145
    • /
    • 2004
  • Long-term wave distribution at Jeju sea is investigated by a numerical simulation based on the thirdgeneration wave model SWAN (Simulating WAves Nearshore). The Jeju sea which retains relatively high wave energy density among Korean coastal regions is considered to be a suitable site for wave power generation and the efficiency of wave power generation is closely related to local wave characteristics. The monthly mean of a large-scale long-term wave data from 1979 to 2002, which is provided by Korea Ocean Research & Development Institute. is used as the boundary condition of SWAN model simulation with 1km grid. An analysis of wave distribution concentrates on the seasonal variation and spatial distribution of significant wave heights, mean wave directions and mean wave periods. Significant wave heights are higher in winter and summer and the west sea of Jeju appears relatively higher than east's. The highest significant wave height occurs at the northeast sea in winter and the second highest significant wave height appears at the southeast sea in summer, while the significant wave heights in spring and autumn are relatively low but homogeneous. The distribution of wave directions reveals that except the rear region influenced by wave refraction, the northwest wave direction is dominant in summer and the southeast in winter. Wave periods are longer in summer and winter and the west sea of Jeju appears relatively longer than east's. The longest wave period occurs at the west sea in winter, and in summer it appears relatively homogeneous with a little longer period at the south sea.

  • PDF

A Simulation of Directional Irregular Waves at Chagui-Do Sea Area in Jeju Using the Boussinesq Wave Model (Boussinesq 모델을 이용한 제주 차귀도 해역의 다방향 불규칙파 시뮬레이션)

  • Ryu, Hwang-Jin;Shin, Seung-Ho;Hong, Key-Yong;Hong, Seok-Won;Kim, Do-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.7-17
    • /
    • 2007
  • Based on the Boussinesq wave model, the wave distribution in the Chagui-Do sea area in Jeju was simulated by applying the directional irregular waves at an incident boundary. The time and spatial variations of monthly mean wave height and period were investigated, which aims to provide basic information on optimal sites for wave power generation. The grid size and time interval of the Boussinesq wave model were validated by examining wave distributions around a surface piercing wall, fixed at sea bottom with a constant slope. Except for the summer season, the significant wave height is dominated by wind waves and appears to be relatively high at the north sea of Chagui-Do, which is open to the ocean, while it is remarkably reduced at the rear sea of Chagui-Do because of its blocking effect on incident waves. In the summer, the significant wave height is higher at the south sea, and it is dominated by the swell waves, which is contributed by the strong south-west wind. The magnitude of significant wave height is the largest in the winter and the lowest in the spring. Annual average of the significant wave height is distinctively high at the west sea close to the Chagui-Do coast, due to a steep variation of water depth and corresponding wave focusing effect. The seasonal and spatial distribution of the wave period around Chagui-Do sea reveals very similar characteristics to the significant wave height. It is suggested that the west sea close to the Chagui-Do coast is the mast promising site for wave power generation.

Characteristics of Waves Continuously Observed over Six Years at Offshore Central East Coast of Korea (우리나라 동해안 중부 해역에서 6년간 연속 관측된 파랑의 특성)

  • Jeong, Weon-Mu;Oh, Sang-Ho;Cho, Hong-Yeon;Baek, Won-Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.88-99
    • /
    • 2019
  • This study presents the results of analysis for the wave data that were consecutively collected from February 2013 to November 2018 at the location of 1.6 km offshore from Namhangjin beach. The water depth at the location is 30.5 m and waves were measured by AWAC (Acoustic Wave And Current meter). By using wave-by-wave analysis and spectral analysis, wave heights and periods were evaluated and then the relationships between the quantities obtained by the two methods were proposed based on linear regression analysis. In addition, monthly and yearly variations of the significant wave height and period, and the peak wave direction were analyzed. Moreover, the relationship between the significant wave height and period was newly suggested. Variability and probability distribution of the significant wave period with respect to the significant wave height were also examined.