• Title/Summary/Keyword: signed domination number

Search Result 3, Processing Time 0.016 seconds

ON THE SIGNED TOTAL DOMINATION NUMBER OF GENERALIZED PETERSEN GRAPHS P(n, 2)

  • Li, Wen-Sheng;Xing, Hua-Ming;Sohn, Moo Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.2021-2026
    • /
    • 2013
  • Let G = (V,E) be a graph. A function $f:V{\rightarrow}\{-1,+1\}$ defined on the vertices of G is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. The signed total domination number of G, ${\gamma}^s_t(G)$, is the minimum weight of a signed total dominating function of G. In this paper, we study the signed total domination number of generalized Petersen graphs P(n, 2) and prove that for any integer $n{\geq}6$, ${\gamma}^s_t(P(n,2))=2[\frac{n}{3}]+2t$, where $t{\equiv}n(mod\;3)$ and $0 {\leq}t{\leq}2$.

SIGNED TOTAL κ-DOMATIC NUMBERS OF GRAPHS

  • Khodkar, Abdollah;Sheikholeslami, S.M.
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.551-563
    • /
    • 2011
  • Let ${\kappa}$ be a positive integer and let G be a simple graph with vertex set V(G). A function f : V (G) ${\rightarrow}$ {-1, 1} is called a signed total ${\kappa}$-dominating function if ${\sum}_{u{\in}N({\upsilon})}f(u){\geq}{\kappa}$ for each vertex ${\upsilon}{\in}V(G)$. A set ${f_1,f_2,{\ldots},f_d}$ of signed total ${\kappa}$-dominating functions of G with the property that ${\sum}^d_{i=1}f_i({\upsilon}){\leq}1$ for each ${\upsilon}{\in}V(G)$, is called a signed total ${\kappa}$-dominating family (of functions) of G. The maximum number of functions in a signed total ${\kappa}$-dominating family of G is the signed total k-domatic number of G, denoted by $d^t_{kS}$(G). In this note we initiate the study of the signed total k-domatic numbers of graphs and present some sharp upper bounds for this parameter. We also determine the signed total signed total ${\kappa}$-domatic numbers of complete graphs and complete bipartite graphs.