• Title/Summary/Keyword: signed distance method

Search Result 30, Processing Time 0.025 seconds

OPTIMIZATION OF STOCK MANAGEMENT SYSTEM WITH DEFICIENCIES THROUGH FUZZY RATIONALE WITH SIGNED DISTANCE METHOD IN SEABORN PROGRAMING TOOL

  • K. KALAIARASI;N. SINDHUJA
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.379-390
    • /
    • 2024
  • This study proposes a fuzzy inventory model for managing large-scale production, incorporating cost considerations. The model accounts for two types of expenditure scenarios-parametric and exponential. Uncertainty surrounds holding costs, setup costs, and demand rates. The approach considers a supply chain system with a complex manufacturing process, factoring in transportation costs based on the quantity of goods and distance between the supplier and retailer. The initial crisp model is then transformed into a fuzzy simulation, incorporating specific fuzzy variables affecting inventory costs. The proposed method significantly reduces overall inventory costs for the entire supply chain. Retailer demand is linked to inventory levels, and vendor/distributor storage deteriorates over time. The fuzzy condition assumes hexagonal variables for all associated factors. The study employs the signed distance method for defuzzification to determine the optimal order quantity with hexagonal fuzzy numbers. Mathematical examples are provided to illustrate the practicality of the proposed approach.

Tetrahedral Meshing with an Octree-based Adaptive Signed Distance Field (옥트리 기반의 적응적 부호거리장을 이용한 사면체 요소망 생성)

  • Park, Seok-Hun;Choi, Min-Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • High-quality tetrahedral meshes are crucial for FEM-based simulation of large elasto-plastic deformation and tetrahedral-mesh-based simulation of fluid flow. This paper proposes a volume meshing method that exploits an octree-based adaptive signed distance field to fill the inside of a polygonal object with tetrahedra, of which dihedral angles are good. The suggested method utilizes an octree structure to reduce the total number of tetrahedra by space-efficiently filling an object with graded tetrahedra. To obtain a high-quality mesh with good dihedral angles, we restrict the octree in such a way that any pair of neighboring cells only differs by one level. In octree-based tetrahedral meshing, the signed distance computation of a point to the surface of a given object is a very important and frequently-called operation. To accelerate this operation, we develop a method that computes a signed distance field directly on the vertices of the octree cells while constructing the octree using a top-down approach. This is the main focus of the paper. The suggested tetrahedral meshing method is fast, stable and easy to implement.

Design of a SMC-type FLC and Its Equivalence

  • 최병재;곽성우;김병국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.14-20
    • /
    • 1997
  • This paper proposes a new design method for the SMC-type FLC and shows that a SMC-type LFC is an extension of the SMC with BL. The conventional SMC-type FLC uses error and change-of-error as inputs of the FLC and generates the absolute value of a switching magnitude. Then, the fuzzy rule table is constructed on a two-dimensional space of the phase plane and has commonly the skew symmetric property. In this paper, we introduce a new variable, signed distance, from the skew symmetric property of the rule table. And thd variable becomes only a fuzzy variable that is used to generate the control input of a SMC-type FLC. that is, we design a new SMC-type FLC that uses a signed distance and a control input as the variables representing the contents of the rule-antecedent and the rule-con-sequent, respectively. Then the number of total rules is reduced and the control performance is almost the same as that of the conventional SMC-type FLC. Additionally, we derive the control law of the ordinary SMC with BL from a new SMC-type FLC. Namely, we show that a FLC is an extension of the SMC with BL.

  • PDF

An Efficient Polygonal Surface Reconstruction (효율적인 폴리곤 곡면 재건 알고리즘)

  • Park, Sangkun
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • We describe a efficient surface reconstruction method that reconstructs a 3D manifold polygonal mesh approximately passing through a set of 3D oriented points. Our algorithm includes 3D convex hull, octree data structure, signed distance function (SDF), and marching cubes. The 3D convex hull provides us with a fast computation of SDF, octree structure allows us to compute a minimal distance for SDF, and marching cubes lead to iso-surface generation with SDF. Our approach gives us flexibility in the choice of the resolution of the reconstructed surface, and it also enables to use on low-level PCs with minimal peak memory usage. Experimenting with publicly available scan data shows that we can reconstruct a polygonal mesh from point cloud of sizes varying from 10,000 ~ 1,000,000 in about 1~60 seconds.

Efficient GPU Framework for Adaptive and Continuous Signed Distance Field Construction, and Its Applications

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.63-69
    • /
    • 2022
  • In this paper, we propose a new GPU-based framework for quickly calculating adaptive and continuous SDF(Signed distance fields), and examine cases related to rendering/collision processing using them. The quadtree constructed from the triangle mesh is transferred to the GPU memory, and the Euclidean distance to the triangle is processed in parallel for each thread by using it to find the shortest continuous distance without discontinuity in the adaptive grid space. In this process, it is shown through experiments that the cut-off view of the adaptive distance field, the distance value inquiry at a specific location, real-time raytracing, and collision handling can be performed quickly and efficiently. Using the proposed method, the adaptive sign distance field can be calculated quickly in about 1 second even on a high polygon mesh, so it is a method that can be fully utilized not only for rigid bodies but also for deformable bodies. It shows the stability of the algorithm through various experimental results whether it can accurately sample and represent distance values in various models.

Detailed Representation of Liquid-Solid Mixed Surfaces with Adaptive Framework Based Hybrid SDF and Surface Reconstruction (적응형 프레임워크 기반의 하이브리드 부호거리장과 표면복원을 이용한 액체와 고체 혼합 표면의 세밀한 표현)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.4
    • /
    • pp.11-19
    • /
    • 2017
  • We propose a new pipeline of fluid surface reconstruction that incorporates hybrid SDF(signed distance fields) and adaptive fluid surface techniques to finely reconstruct liquid-solid mixed surfaces. Previous particle-based fluid simulation suffer from a noisy surface problem when the particles are distributed irregularly. If a smoothing scheme is applied to reduce the problem, sharp and detailed features can be lost by over-smoothing artifacts. Our method constructs a hybrid SDF by combining signed distance values from the solid and liquid parts of the object. We also proposed a method of adaptively reconstructing the surface of the fluid to further improve the overall efficiency. This not only shows the detailed surface of the solid and liquid parts, but also the detail of the solid surface and the smooth fluid surface when both materials are mixed. We introduce the concept of guiding shape and propose a method to get signed distance value quickly. In addition, the hybrid SDF and mesh reconstruction techniques are integrated in the adaptive framework. As a result, our method improves the overall efficiency of the pipeline to restore fluid surfaces.

Efficient Calculation of Distance Fields Using Cell Subdivision (셀 분할을 이용한 거리장의 효율적 계산)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.147-156
    • /
    • 2008
  • A new approach based on cone prism intersection method combined with sorting algorithm is proposed for the fast and robust signed distance field computation. In the method, the space bounding the geometric model composed of triangular net is divided into multiple smaller cells. For the efficient calculation of distance fields, valid points among the triangular net which will generate minimum distances with current cell are selected by checking the intersection between current cell and cone prism generated at each point. The method is simple to implement and able to achieve an order of magnitude improvement in the computation time as compared to earlier approaches. Further the method is robust in handling the traditional sign problems. The validity of the suggested method was demonstrated by providing numerous examples including Boolean operation, shape deformation and morphing of complex geometric models.

Interaction of Fluid and Thin Shell Structure with Signed Distance Fields (거리 장 함수를 이용한 얇은 막과 유체의 예측 기반 상호작용 시뮬레이션)

  • Kim, Po-Ram;Shin, Seung-Ho;Lim, Jae-Ho;Kim, Chang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • In Computer Graphics, interaction between a particle-based fluid and a rigid body is important. In General, this interaction has been simulated in a discrete environment. As a result, there have been lots of errors. The larger the time step is used, the bigger the error is. This paper describes how to minimize the error in a discrete environment. To be specific, the collision handling method is that estimates particle collision using a signed distance function increases continuously according to space. At the time a fluid particle and a rigid body model collide, the exact collision time and the position is estimated. Through this, we propose the method how to be simulated the interaction between a fluid and a rigid body model as a continuous environment.

A STUDY OF TWO SPECIES MODEL WITH HOLLING TYPE RESPONSE FUNCTION USING TRIANGULAR FUZZY NUMBERS

  • P. VINOTHINI;K. KAVITHA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.723-739
    • /
    • 2023
  • In this paper, we developed three theoretical models based on prey and predator that exhibit holling-type response functions. In both a fuzzy and a crisp environment, we have provided a mathematical formulation for the prey predator concept. We used the signed distance method to defuzzify the triangular fuzzy numbers using the alpha-cut function. We can identify equilibrium points for all three theoretical models using the defuzzification technique. Utilizing a variational matrix, stability is also performed with the two species model through three theoretical models. Results are presented, followed by discussion. MATLAB software is used to provide numerical simulations.

Design and Implementation of a Single Input Fuzzy Logic Controller for Boost Converters

  • Salam, Zainal;Taeed, Fazel;Ayob, Shahrin Md.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.542-550
    • /
    • 2011
  • This paper describes the design and hardware implementation of a Single Input Fuzzy Logic Controller (SIFLC) to regulate the output voltage of a boost power converter. The proposed controller is derived from the signed distance method, which reduces a multi-input conventional Fuzzy Logic Controller (CFLC) to a single input FLC. This allows the rule table to be approximated to a one-dimensional piecewise linear control surface. A MATLAB simulation demonstrated that the performance of a boost converter is identical when subjected to the SIFLC or a CFLC. However, the SIFLC requires nearly an order of magnitude less time to execute its algorithm. Therefore the former can replace the latter with no significant degradation in performance. To validate the feasibility of the SIFLC, a 50W boost converter prototype is built. The SIFLC algorithm is implemented using an Altera FPGA. It was found that the SIFLC with asymmetrical membership functions exhibits an excellent response to load and input reference changes.