• Title/Summary/Keyword: signaling mechanisms

Search Result 1,021, Processing Time 0.04 seconds

ROLE OF ERK1/2 IN 6-HYDROXYDOPAMINE-INDUCED APOPTOSIS IN SK-N-SH HUMAN NEUROBLASTOMA CELLS

  • Jin, Da-Qing;Kim, Jung-Ae
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.196.2-197
    • /
    • 2003
  • Parkinson's disease (PO) is a widespread neurodegenerative disorder. Even though PD has been studied in many aspects, it is still unknown the molecular signaling mechanisms linking reactive oxygen species (ROS) and neuronal apoptosis in PD. A better understanding of cellular mechanisms that occur in Parkinson's disease is essential for development of new therapies. In this study we investigated the signaling molecules involved in neuronal apoptosis induced by 6-hydroxydopamine (6-OHDA) in human SK-N-SH neuroblastoma cells as a model cellular system. (omitted)

  • PDF

Interleukin-1β Signaling Contributes to Cell Cycle Arrest and Apoptotic Cell Death by Leptin via Modulation of AKT and p38MAPK in Hepatocytes

  • Ananda Baral;Pil-Hoon Park
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.611-626
    • /
    • 2024
  • Leptin, an adipose tissue-derived hormone, has exhibited the potent hepatotoxic effects. However, the underlying molecular mechanisms are not fully understood. In this study, we have elucidated the mechanisms by which leptin exerts cytotoxic effects in hepatocytes, particularly focusing on the role of interleukin-1β (IL-1β) signaling. Leptin significantly induced maturation and secretion of IL-1β in cultured rat hepatocytes. Interestingly, inhibition of IL-1β signaling by pretreatment with an IL-1 receptor antagonist (IL-1Ra) or gene silencing of type I IL-1 receptor (IL-1R1) markedly abrogated leptin-induced cell cycle arrest. The critical role of IL-1β signaling in leptin-induced cell cycle arrest is mediated via upregulation of p16, which acts as an inhibitor of cyclin-dependent kinase. In addition, leptin-induced apoptotic cell death was relieved by inhibition of IL-1β signaling, as determined by annexin V/7-AAD binding assay. Mechanistically, IL-1β signaling contributes to apoptotic cell death and cell cycle arrest by suppressing AKT and activation of p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Involvement of IL-1β signaling in cytotoxic effect of leptin was further confirmed in vivo using hepatocyte specific IL-1R1 knock out (IL-1R1 KO) mice. Essentially similar results were obtained in vivo, where leptin administration caused the upregulation of apoptotic markers, dephosphorylation of AKT, and p38MAPK activation were observed in wild type mice liver without significant effects in the livers of IL-1R1 KO mice. Taken together, these results demonstrate that IL-1β signaling critically contributes to leptin-induced cell cycle arrest and apoptosis, at least in part, by modulating p38MAPK and AKT signaling pathways.

Cell Signaling Mechanisms of Sperm Motility in Aquatic Species

  • Kho, Kang-Hee;Morisawa, Masaaki;Cho, Kap-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.665-671
    • /
    • 2005
  • Initiation and activation of sperm motility are prerequisite processes for the contact and fusion of male and female gametes at fertilization. The phenomena are under the regulation of cAMP and $Ca^{2+}$ in vertebrates and invertebrates. Mammalian sperm requires $Ca^{2+}$ and cAMP for the activation of sperm motility. Cell signaling for the initiation and activation of sperm motility in the ascidians and salmonid fishes has drawn much attention. In the ascidians, the sperm-activating and attracting factors from unfertilized egg require extracellular $Ca^{2+}$ for activating sperm motility and eliciting chemotactic behavior toward the egg. On the other hand, the cAMP-dependent phosphorylation of protein is essential for the initiation of sperm motility in salmonid fishes. A decrease of the environmental $K^+$ concentration surrounding the spawned sperm causes $K^+$ efflux and $Ca^{2+}$ influx through the specific $K^+$ channel and dihydropyridine-sensitive L-/T-type $Ca^{2+}$ channel, respectively, thereby leading to the membrane hyperpolarization. The membrane hyperpolarization induces synthesis of cAMP, which triggers further cell signaling processes, such as cAMP-dependent protein phosphorylation, to initiate sperm motility in salmonid fishes. This article reviews the studies on the physiological mechanisms of sperm motility and its cell signaling in aquatic species.

IL-1 Receptor Dynamics in Immune Cells: Orchestrating Immune Precision and Balance

  • Dong Hyun Kim;Won-Woo Lee
    • IMMUNE NETWORK
    • /
    • v.24 no.3
    • /
    • pp.21.1-21.16
    • /
    • 2024
  • IL-1, a pleiotropic cytokine with profound effects on various cell types, particularly immune cells, plays a pivotal role in immune responses. The proinflammatory nature of IL-1 necessitates stringent control mechanisms of IL-1-mediated signaling at multiple levels, encompassing transcriptional and translational regulation, precursor processing, as well as the involvement of a receptor accessory protein, a decoy receptor, and a receptor antagonist. In T-cell immunity, IL-1 signaling is crucial during both the priming and effector phases of immune reactions. The fine-tuning of IL-1 signaling hinges upon two distinct receptor types; the functional IL-1 receptor (IL-1R) 1 and the decoy IL-1R2, accompanied by ancillary molecules such as the IL-1R accessory protein (IL-1R3) and IL-1R antagonist. IL-1R1 signaling by IL-1β is critical for the differentiation, expansion, and survival of Th17 cells, essential for defense against extracellular bacteria or fungi, yet implicated in autoimmune disease pathogenesis. Recent investigations emphasize the physiological importance of IL-1R2 expression, particularly in its capacity to modulate IL-1-dependent responses within Tregs. The precise regulation of IL-1R signaling is indispensable for orchestrating appropriate immune responses, as unchecked IL-1 signaling has been implicated in inflammatory disorders, including Th17-mediated autoimmunity. This review provides a thorough exploration of the IL-1R signaling complex and its pivotal roles in immune regulation. Additionally, it highlights recent advancements elucidating the mechanisms governing the expression of IL-1R1 and IL-1R2, underscoring their contributions to fine-tuning IL-1 signaling. Finally, the review briefly touches upon therapeutic strategies targeting IL-1R signaling, with potential clinical applications.

Interplay between Brassinosteroid and ABA signaling during early seedling development (유식물 발달과정에서 브라시노스테로이드와 앱시스산 신호전달의 상호작용 연구)

  • Kim, Hyemin;Hong, Jeongeui;Cho, Yong-Gu;Kang, Kwon Kyoo;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.264-270
    • /
    • 2017
  • Brassinosteroid (BR), a plant steroid hormone, plays a critical role in the growth and developmental processes through its canonical signaling and crosstalk with various internal and external signaling pathways. Recent studies have revealed the essential interplay mechanisms between BR and ABA during seed germination and early seedling establishment. However, molecular mechanisms for this important signaling crosstalk are largely unknown. To understand the crosstalk between BR-mediated signaling pathways and ABA functions during early seedling development, we carried out a comparative genome-wide transcriptome analysis with an Agilent Arabidopsis $4{\times}44K$ oligo chip. We selected and compared the expression patterns of ABA response genes in ABA-insensitive bes1-D mutant with wild type seedlings on which ABA was exogenously applied. As a result, we identified 2,353 significant differentially expressed genes (DEGs) in ABA-treated bes1-D and wild type seedlings. GO enrichment analysis revealed that ABA signaling, response, and metabolism were critically down-regulated by BR-activated signaling pathways. In addition, the genome-wide transcriptome analysis data revealed that BR-regulated signaling pathways were tightly connected to diverse signal cues including abiotic/biotic stress, auxin, ROS etc. In this study, we newly identified the molecular mechanisms of BR-mediated repression of ABA signaling outputs. Also, our data suggest that interplay among diverse signaling pathways is critical for the adaptive response of the plant to various environmental factors.

Zika Virus-Encoded NS2A and NS4A Strongly Downregulate NF-κB Promoter Activity

  • Lee, Jeong Yoon;Nguyen, Thi Thuy Ngan;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1651-1658
    • /
    • 2020
  • Since Zika virus (ZIKV) was first detected in Uganda in 1947, serious outbreaks have occurred globally in Yap Island, French Polynesia and Brazil. Even though the number of infections and spread of ZIKV have risen sharply, the pathogenesis and replication mechanisms of ZIKV have not been well studied. ZIKV, a recently highlighted Flavivirus, is a mosquito-borne emerging virus causing microcephaly and the Guillain-Barre syndrome in fetuses and adults, respectively. ZIKV polyprotein consists of three structural proteins named C, prM and E and seven nonstructural proteins named NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 in an 11-kb single-stranded positive sense RNA genome. The function of individual ZIKV genes on the host innate immune response has barely been studied. In this study, we investigated the modulations of the NF-κB promoter activity induced by the MDA5/RIG-I signaling pathway. According to our results, two nonstructural proteins, NS2A and NS4A, dramatically suppressed the NF-κB promoter activity by inhibiting signaling factors involved in the MDA5/RIG-I signaling pathway. Interestingly, NS2A suppressed all components of MDA5/RIG-I signaling pathway, but NS4A inhibited most signaling molecules, except IKKε and IRF3-5D. In addition, both NS2A and NS4A downregulated MDA5-induced NF-κB promoter activity in a dosedependent manner. Taken together, our results suggest that NS2A and NS4A signifcantly antagonize MDA5/RIG-I-mediated NF-κB production, and these proteins seem to be controlled by different mechanisms. This study could help understand the mechanisms of how ZIKV controls innate immune responses and may also assist in the development of ZIKV-specific therapeutics.

Emerging Co-signaling Networks in T Cell Immune Regulation

  • Jung, Keunok;Choi, Inhak
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.184-193
    • /
    • 2013
  • Co-signaling molecules are surface glycoproteins that positively or negatively regulate the T cell response to antigen. Co-signaling ligands and receptors crosstalk between the surfaces of antigen-presenting cells (APCs) and T cells, and modulate the ultimate magnitude and quality of T cell receptor (TCR) signaling. In the past 10 years, the field of co-signaling research has been advanced by the understanding of underlying mechanisms of the immune modulation led by newly identified co-signaling molecules and the successful preclinical and clinical trials targeting co-inhibitory molecules called immune checkpoints in the treatment of autoimmune diseases and cancers. In this review, we briefly describe the characteristics of well-known B7 co-signaling family members regarding the expression, functions and therapeutic implications and to introduce newly identified B7 members such as B7-H5, B7-H6, and B7-H7.

Bacterial Quorum Sensing and Anti-Quorum Sensing (세균의 적정밀도 인식을 통한 신호전달 및 신호전달 차단 연구)

  • 박순양;이정기
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Many bacteria monitor their population density and control the expression of specialized gene sets in response to bacterial cell density based on a mechanism referred to as quorum sensing. In all cases, quorum sensing involves the production and detection of extracellular signaling molecules, auto inducers, as which Gram-negative and Gram-positive bacteria use most prevalently acylated homoserine lactones and processed oligo-peptides, respectively. Through quorum-sensing communication circuits, bacteria regulate a diverse array of physiological functions, including virulence, symbiosis, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. Many pathogens have evolved quorum-sensing mechanisms to mount population-density-dependent attacks to over-whelm the defense responses of plants, animals, and humans. Since these AHL-mediated signaling mechanisms are widespread and highly conserved in many pathogenic bacteria, the disruption of quorum-sensing system might be an attractive target for novel anti-infective therapy. To control AHL-mediated pathogenicity, several promising strategies to disrupt bacterial quorum sensing have been reported, and several chemicals and enzymes have been also investigated for years. These studies indicate that anti-quorum sensing strategies could be developed as possible alternatives of antibiotics.

Caloric restriction and its mimetics

  • Lee, Shin-Hae;Min, Kyung-Jin
    • BMB Reports
    • /
    • v.46 no.4
    • /
    • pp.181-187
    • /
    • 2013
  • Caloric restriction is the most reliable intervention to prevent age-related disorders and extend lifespan. The reduction of calories by 10-30% compared to an ad libitum diet is known to extend the longevity of various species from yeast to rodents. The underlying mechanisms by which the benefits of caloric restriction occur have not yet been clearly defined. However, many studies are being conducted in an attempt to elucidate these mechanisms, and there are indications that the benefits of caloric restriction are related to alteration of the metabolic rate and the accumulation of reactive oxygen species. During molecular signaling, insulin/insulin-like growth factor signaling, target of rapamycin pathway, adenosine monophosphate activated protein kinase signaling, and Sirtuin are focused as underlying pathways that mediate the benefits of caloric restriction. Here, we will review the current status of caloric restriction.

Neurovascular Mechanisms in Stroke, Neurodegeneration and Recovery

  • Lo, Eng-H.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.223-229
    • /
    • 2006
  • The emerging concept of the 'neurovascular unit' may enable a powerful paradigm shift for neuroscience. Instead of a pure focus on the 'neurobiology' of disease, an opportunity now exists to return to a more integrative approach. The neurovascular unit emphasizes that signaling between vascular and neuronal compartments comprise the basis for both function and dysfunction in brain. Hence, brain disorders are not just due to death of neurons, but instead manifested as cell signaling perturbations at the neurovascular interface. In this mini-review, we will examine 3 examples of this hypothesis: neurovascular mechanisms involved in the thrombolytic therapy of stroke, the crosstalk between neurogenesis and angiogenesis, and the link between vascular dysfunction and amyloid pathology in Alzheimer's disease. An understanding of cell-cell and cell-matrix signaling at the neurovascular interface may yield new approaches for targeting CNS disorders.