• 제목/요약/키워드: signal pattern classification

검색결과 188건 처리시간 0.023초

용접결함의 패턴분류를 위한 특징변수 유효성 검증 (Availability Verification of Feature Variables for Pattern Classification on Weld Flaws)

  • 김창현;김재열;유홍연;홍성훈
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.62-70
    • /
    • 2007
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. Feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

패턴인식기법을 이용한 공구마멸상태의 분류 (The Classification of Tool Wear States Using Pattern Recognition Technique)

  • 이종항;이상조
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1783-1793
    • /
    • 1993
  • Pattern recognition technique using fuzzy c-means algorithm and multilayer perceptron was applied to classify tool wear states in turning. The tool wear states were categorized into the three regions 'Initial', 'Normal', 'Severe' wear. The root mean square(RMS) value of acoustic emission(AE) and current signal was used for the classification of tool wear states. The simulation results showed that a fuzzy c-means algorithm was better than the conventional pattern recognition techniques for classifying ambiguous informations. And normalized RMS signal can provide good results for classifying tool wear. In addition, a fuzzy c-means algorithm(success rate for tool wear classification : 87%) is more efficient than the multilayer perceptron(success rate for tool wear classification : 70%).

초음파신호의 신경망 형상인식법을 이용한 오스테나이트 스테인레스강의 용접부결함 분류에 관한 연구 (Classification of Welding Defects in Austenitic Stainless Steel by Neural Pattern Recognition of Ultrasonic Signal)

  • 이강용;김준섭
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1309-1319
    • /
    • 1996
  • The research for the classification of the natural defects in welding zone is performd using the neuro-pattern recognition technology. The signal pattern recognition package including the user's defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection, The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian calssifier are compared and discussed. The neuro-pattern recognition technique is applied to the classificaiton of such natural defects as root crack, incomplete penetration, lack of fusion, slag inclusion, porosity, etc. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the natural welding defects.

웨이블릿 신경망을 이용한 패턴 분류 시스템 설계 및 EEG 신호 분류에 대한 연구 (A Study of Pattern Classification System Design Using Wavelet Neural Network and EEG Signal Classification)

  • 임성길;박찬호;이현수
    • 전자공학회논문지CI
    • /
    • 제39권3호
    • /
    • pp.32-43
    • /
    • 2002
  • 본 논문에서는 신경망에 기반한 디지털 신호를 위한 패턴분류 시스템을 제안한다. 제안하는 시스템은 두 가지 신경망 모델로 구성된다. 첫 번째 부분은 특징 추출의 역할을 하는 웨이블릿 신경망이다. 이 부분을 위해 기존의 웨이블릿 신경망 모델들을 비교한 후, 특징 추출을 위한 새로운 웨이블릿 신경망 모델을 제안한다. 다른 부분은 패턴 분류를 위한 웨이블릿 신경망이다. 패턴 분류에 적용하기 위해 기존의 웨이블릿 신경망 구조를 수정하고 학습 방법을 제안한다. 패턴 분류 웨이블릿 신경망의 입력은 특징 추출 신경망의 은닉노드의 연결강도, 확장 및 이동 파라미터로 구성되었다. 또 출력은 특징 추출 신경망의 입력 신호가 속한 부류를 나타낸다. 제안한 시스템을 EEG 신호를 주파수에 따라서 분류하는 문제에 적용하였다.

용접결함의 형상인식을 위한 특징변수 추출에 관한 연구 (A Study on the Extraction of Feature Variables for the Pattern Recognition of Welding Flaws)

  • 김재열;노병옥;유신;김창현;고명수
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

용접결함의 패턴인식을 위한 디지털 신호처리에 관한 연구 (A Study on the Digital Signal Processing for the Pattern fiecognition of Weld Flaws)

  • 김재열;송찬일;김병현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.393-396
    • /
    • 1995
  • In this syudy, the researches classifying the artificial and natural flaws in welding parts are performed using the smart pattern recognition technology. For this purpose the smart signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing,feature extraction , feature selection and classifier selection is treated by bulk. Specially it is composed with and discussed using the statistical classifier such as the linear disciminant function classifier, the empirical Bayesian classifier. Also, the smart pattern recognition technology is applied to classification problem of natural flaw(i.e multiple classification problem-crack,lack of penetration,lack of fusion,porosity,and slag inclusion, the planar and volumetric flaw classification problem). According to this results, if appropriately learned the neural network classifier is better than ststistical classifier in the classification problem of natural flaw. And it is possible to acquire the recognition rate of 80% above through it is different a little according to domain extracting the feature and the classifier.

  • PDF

근전도 신호를 이용한 보행 패턴 분류 (Gait Pattern Classification using EMG Signal)

  • 지연주;송신우;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.115-115
    • /
    • 2000
  • A gait pattern classification method using electromyography(EMG) signal is presented. The gait pattern with four stages such as stance, heel-off, swing and heel-strike is analyzed and classified using feature parameters such as zero-crossing, integral absolute value and variance of the EMG signal. The EMG signal from Tibialis Anterior and Gastrocnemius muscles was obtained using the surface electrodes, and low-pass filtered at 10kHz. The filtered analog signal was sampled at every 0.5msec and converted to digital signal with 12-bit resolution. The obtained data is analyzed and classified in terms of feature parameters. Analysis results are given to show that the gait patterns classified by the proposed method are feasible.

  • PDF

근전도의 패턴분류와 근력 추정에 관한 연구 (A Study on the Pattern Classification of EMG and Muscle Force Estimation)

  • 권장우;장영건;정동명;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 1992
  • In the field of prosthesis arm control, the pattern classification of the EMG signal is a required basis process and also the estimation of force from collected EMG data is another necessary duty. But unfortunately, what we've got is not real force but an EMG signal which contains the information of force. This is the reason why we estimate the force from the EMG data. In this paper, when we handle the EMG signal to estimate the force, spatial prewhitening process is applied from which the spatial correlation between the channels are removed. And after the orthogonal transformation which is used in the force estimation process, the transformed signal Is inputed into the probabilistic model for pattern classification. To verify the different results of the multiple channels, SNR(signal to noise ratio) function is introduced.

  • PDF

개인별 이상신호 검출과 QRS 패턴 변화에 따른 조기심실수축 분류 (PVC Classification by Personalized Abnormal Signal Detection and QRS Pattern Variability)

  • 조익성;윤정오;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제18권7호
    • /
    • pp.1531-1539
    • /
    • 2014
  • 조기심실수축(PVC)은 가장 보편적인 부정맥으로 심실세동, 심실빈맥 등과 같은 위험한 상황을 유발할 수 있는 가능성을 가지고 있기 때문에 이의 조기 검출은 매우 중요하다. 하지만 ECG 신호의 개인 차이가 있음에도 불구하고, 일반적인 신호의 판단 규칙에 따라 진단을 수행함으로써 성능하락이 나타날 수 밖에 없다. 이러한 문제점을 극복하기 위해서는 개인에 따른 이상 신호를 검출한 후 다양한 QRS 패턴을 고려하여 PVC를 분류할 수 있는 알고리즘이 필요하다. 본 연구에서는 개인별 이상신호 검출과 QRS 패턴 변화에 따른 PVC 분류 기법을 제안한다. 이를 위해 전 처리 과정과 차감기법을 통해 R파를 검출하였으며, 개인별 이상신호를 검출하였다. 이후 QRS 패턴에 따른 QS 간격과 R파의 진폭 변화율에 따라 PVC를 분류하였다. 제안한 알고리즘의 이상 신호 검출 및 PVC 분류 성능을 평가하기 위해서 MIT-BIH 부정맥 데이터베이스를 사용하였다. 성능평가 결과, 이상 신호 검출률은 98.33%, PVC는 각각 94.46%의 평균 분류율을 나타내었다.