• Title/Summary/Keyword: signal modeling

Search Result 934, Processing Time 0.032 seconds

Method of Biological Information Analysis Based-on Object Contextual (대상객체 맥락 기반 생체정보 분석방법)

  • Kim, Kyung-jun;Kim, Ju-yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.41-43
    • /
    • 2022
  • In order to prevent and block infectious diseases caused by the recent COVID-19 pandemic, non-contact biometric information acquisition and analysis technology is attracting attention. The invasive and attached biometric information acquisition method accurately has the advantage of measuring biometric information, but has a risk of increasing contagious diseases due to the close contact. To solve these problems, the non-contact method of extracting biometric information such as human fingerprints, faces, iris, veins, voice, and signatures with automated devices is increasing in various industries as data processing speed increases and recognition accuracy increases. However, although the accuracy of the non-contact biometric data acquisition technology is improved, the non-contact method is greatly influenced by the surrounding environment of the object to be measured, which is resulting in distortion of measurement information and poor accuracy. In this paper, we propose a context-based bio-signal modeling technique for the interpretation of personalized information (image, signal, etc.) for bio-information analysis. Context-based biometric information modeling techniques present a model that considers contextual and user information in biometric information measurement in order to improve performance. The proposed model analyzes signal information based on the feature probability distribution through context-based signal analysis that can maximize the predicted value probability.

  • PDF

Finite Element Analysis for Acoustic Characteristics of Piezoelectric Underwater Acoustic Sensors (압전 수중음향센서 음향특성의 유한요소해석)

  • 김재환;손선봉;조철희;조치영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.68-76
    • /
    • 2001
  • Sonar is the system that detects objects and finds their location in water by using the echo ranging technique. In order to have excellent performance in variable environment, acoustic characteristics of this system must be analyzed accurately. In this paper, based on the finite element analysis, modeling and analysis of acoustic characteristics of underwater acoustic sensors are preformed. Couplings between piezoelectric and elastic materials, and fluid and structure systems associated with the modeling of piezoelectric underwater acoustic sensors are formulated. In the finite element modeling of unbounded acoustic fluid, IWEE (Infinite Eave Envelop Element) is adopted to take into account the infinite domain. When an incidence wave excites the surface of Tonpilz underwater acoustic sensor, the scattered wave on the sensor is founded by satisfying the radiation condition at the artificial boundary approximately. Based on this scattering analysis, the electrical response of the underwater acoustic sensor under incidence, so called RVS (Receiving Voltage Signal) is founded accurately. This will devote to design Sonar systems accurately.

  • PDF

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

Radial Basis Hybrid Neural Network Modeling for On-line Detection of Machine Condition Change (기계상태의 변화를 온라인으로 탐지하기 위한 Radial Basis 하이브리드 뉴럴네트워크 모델링)

  • Wang, Gi-Nam;Kim, Gwang-Sub;Jeong, Yoon-Seong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.4
    • /
    • pp.113-134
    • /
    • 1994
  • A radial basis hybrid neural network (RHNN) is presented for an on-line detection of machine condition change. Two-phase modeling by RHNN is designed for describing a machine condition process and for predicting future signal. A moving block procedure is also designed for detecting a process change. A fast on-line learning algorithm, the recursive least square estimation, is introduced. Experimental results showed the RHNN could be utilized efficiently for on-line machine condition monitoring.

  • PDF

A Study on the Application of Real-Time Object-Oriented Modeling Technique For Real-Time Computer Control

  • Kim Jong-Sun;Yoo Ji-Yoon
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.546-551
    • /
    • 2001
  • This paper considers the design technique of the real-time control algorithm to implement the electronic interlocking system which is the most important station control system in railway signal field. The proposed technique consists of the structure design and the detail design which are based on the ROOM(Real-Time Object-Oriented Modeling) This proposed technique is applied to the typical station model in order to prove the validity as verifying the performance of the modeled station.

  • PDF

Location Information Sharing modeling Using Bluetooth between Vehicle and Mobile Phone (차량과 휴대 전화간의 블루투스를 이용한 위치정보 공유 모델링)

  • Kim, Jun-Hee;Kim, Jong-Ho;Kim, Yong-Deak
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.329-330
    • /
    • 2008
  • GPS which measured user's location information outdoors should be of poor sensitivity because of interference and jamming of different electromagnetic waves. Specially, it has a defect of low received rate in high-rise urban where reflection and refraction of satellite signal go well. In this paper, I propose user location information sharing modeling of both vehicle and mobile phone using bluetooth in urban.

  • PDF

Railway Facilities and Train Movement Modeling by Object Oriented Concept (객체지향기법에 의한 철도선로 및 열차운행 모델링)

  • Choi, Kyu-Hyoung;Gu, Se-Wan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.393-395
    • /
    • 1998
  • This paper presents a modeling of railway facilities based on object-oriented software development technique for train operation simulation program. Railway network is decomposed by Line Structure Model and Signal System Model which can be composed to make the train routes and train performance calculation. A brief explanation of class design about these model is provided.

  • PDF

Multiresponse Optimization Using a Response Surface Approach to Taguchi′s Parameter Design (다구찌의 파라미터 설계에 대한 반응표면 접근방법을 이용한 다반응 최적화)

  • 이우선;이종협;임성수
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.1
    • /
    • pp.165-194
    • /
    • 1999
  • Taguchi's parameter design seeks proper choice of levels of controllable factors (Parameters in Taguchi's terminology) that makes the qualify characteristic of a product optimal while making its variability small. This aim can be achieved by response surface techniques that allow flexibility in modeling and analysis. In this article, a collection of response surface modeling and analysis techniques is proposed to deal with the multiresponse optimization problem in experimentation with Taguchi's signal and noise factors.

  • PDF

Optimal Signal Segment Length for Modified Run-test and RA(reverse arrangement)-test for Assessing Surface EMG Signal Stationarity (표면근전도 신호의 정상성 검사를 위한 수정된 Run-검증과 RA-검증에 최적인 신호분할 길이)

  • Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1128-1133
    • /
    • 2014
  • Most of the statistical signal analysis processed in the time domain and the frequency domain are based on the assumption that the signal is weakly stationary(wide sense stationary). Therefore, it is necessary to know whether the surface EMG signals processed in the statistical basis satisfy the condition of the weak stationarity. The purpose of this study is to find optimal segment length of surface EMG signal for assessing stationarity with the modified Run-test and RA-test. Ten stationary surface EMG signals were simulated by AR(autoregressive) modeling, and ten real surface EMG signals were recorded from biceps brachii muscle and then modified to have non-stationary structures. In condition of varying segment length from 20ms to 100ms, stationarity of the signals was tested by using six different methods of modified Run-test and RA-test. The results indicate that the optimal segment length for the surface EMG is 30ms~35ms, and the best way for assessing surface EMG signal stationarity is the modified Run-test (Run2) method using this optimal length.

Shielding effect model and Signal Switching in the multi-layer interconnects (다층 배선에서 차폐효과 모델 및 스위칭에 미치는 영향)

  • 진우진;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1145-1148
    • /
    • 1998
  • New capacitance modeling and transient analysis for multi-layer interconnects with shielding effect are presented. The upper layer capacitances with under-layer shielding lines are represented by introducing a filling factor η which can be defined as the ratio of upper-layer line length to the total under-layer line width. The upper-layer effective self capacitances considering two extreme cases which the underlayer metals are assumed as a ground or as a Vdd are modeled. The signal transient analysis with shielding effect model is performed.

  • PDF