• 제목/요약/키워드: signal intelligence

검색결과 239건 처리시간 0.034초

신경회로망을 이용한 지능형 가공 시스템 제어기 구현 (Implementation of the Controller for intelligent Process System Using Neural Network)

  • 손창우;김관형;김일;탁한호;이상배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.376-379
    • /
    • 2000
  • In this paper, this system makes use of the analog infrered rays sensor and converts the feature of fish analog signal when sensor is operating with CPU(80C196KC). Then, After signal processing, this feature is classified a special feature and a outline of fish by using the neural network, one of the artificial intelligence scheme. This neural network classifies fish pattern of very simple and short calculation. This has linear activation function and the error backpropagation is used as a learning algorithm. And the neural network is learned in off-line process. Because an adaptation period of neural network is too long time when random initial weights are used, off-line learning is induced to decrease the progress time. We confirmed this method has better performance than somewhat outdated machines.

  • PDF

열차제어기술 체계화 방안에 대한 연구 (A Study of Systematization for Train Control Technique)

  • 이재호;신덕호;이강미
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.2010-2016
    • /
    • 2009
  • Before introducing high speed train, train signal system was operated passively depending on a driver by signal lamp display. Now it is changing to onboard signaling system because of train speed increased(conventional track is 230km/h, high speed track is 380km/h), high speed. low speed freight train operation mixed, operation for high speed train in conventional track and dense operation. ie. ETCS(European Train Control System) Level 1 is introducing. Also, in case of high speed train, the train control system of France was introduced and has operated from 2004, now we have a difficulty for rising speed more than 300km/h because of commercial operation speed limited as 300km/h. Therefore, it need to establish the train control technique according to trackside surroundings and develope standard system like European ERTMS/ETCS, China CTCS(Chinese Train Control System), Japan D-ATC(Digital Automatic Train Control). In this paper, we derive the systematization method for Korea train technique by network-oriented, information-oriented, intelligence-oriented and combination-oriented corresponding train development direction. Proposed method has a merit to prevent cross by mixed operation with existing system and improvement after validity demonstration and system development and supply train system to meet user requirement in exporting.

  • PDF

지적보전시스템의 실시간 다중고장진단 기법 개발 (Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System)

  • 배용환
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

물류 회전설비 고장예지 시스템 (A Fault Prognostic System for the Logistics Rotational Equipment)

  • 김수형;볘르드바에브 예르갈리;조형기;김규익;김진석
    • 산업경영시스템학회지
    • /
    • 제46권2호
    • /
    • pp.168-175
    • /
    • 2023
  • In the era of the 4th Industrial Revolution, Logistic 4.0 using data-based technologies such as IoT, Bigdata, and AI is a keystone to logistics intelligence. In particular, the AI technology such as prognostics and health management for the maintenance of logistics facilities is being in the spotlight. In order to ensure the reliability of the facilities, Time-Based Maintenance (TBM) can be performed in every certain period of time, but this causes excessive maintenance costs and has limitations in preventing sudden failures and accidents. On the other hand, the predictive maintenance using AI fault diagnosis model can do not only overcome the limitation of TBM by automatically detecting abnormalities in logistics facilities, but also offer more advantages by predicting future failures and allowing proactive measures to ensure stable and reliable system management. In order to train and predict with AI machine learning model, data needs to be collected, processed, and analyzed. In this study, we have develop a system that utilizes an AI detection model that can detect abnormalities of logistics rotational equipment and diagnose their fault types. In the discussion, we will explain the entire experimental processes : experimental design, data collection procedure, signal processing methods, feature analysis methods, and the model development.

시뮬레이션을 이용한 누적 RSSI 신호 기반의 항법 기술 성능 분석 (Analysis of Localization Technology Performance Based on Accumulated RSSI Signal Using Simulation)

  • 신범주;이택진
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권3호
    • /
    • pp.331-339
    • /
    • 2024
  • Reliable and precise indoor localization is crucial for personal navigation, emergency rescue, and monitoring workers indoors. To use this technology in different applications, it is important to make it less dependent on infrastructure and to keep the error as small as possible. Fingerprinting stands out as a popular choice for indoor positioning because it leverages existing infrastructure and works with just a smartphone. However, its accuracy heavily relies on the quality of that infrastructure. For instance, having too few access points or beacons can greatly reduce its effectiveness. To reduce dependence on RF infrastructure, we have developed surface correlation (SC) using accumulated Received Signal Strength Indicator (RSSI) signals This approach constructs a user mask for radio map comparisons using an accumulated RSSI vector and the trajectory of the user, which is estimated through PDR. The location with the highest correlation is considered as the user's position after comparison. Through a simulation, the performance of short RSSI vector-based technology and SC is analyzed, and future directions for the development of SC are discussed.

딥러닝으로 추정한 차량대기길이 기반의 감응신호 연구 (Study of the Operation of Actuated signal control Based on Vehicle Queue Length estimated by Deep Learning)

  • 이용주;심민경;김용만;이상수;이철기
    • 한국ITS학회 논문지
    • /
    • 제17권4호
    • /
    • pp.54-62
    • /
    • 2018
  • 본 연구는 인공지능 신호 구현의 일환으로서, 딥러닝을 통해 실시간으로 추정하는 차량대기길이 기반의 감응식 신호 알고리즘을 제시하였다. 알고리즘의 구현을 위해 딥러닝 모형을 구현한 텐서플로우에 미시적 교통시뮬레이터인 Vissim을 제어하는 API, 즉 COM Interface를 구축하였다. Vissim에서 신호주기별로 수집된 링크통행시간과 통과교통량이 텐서플로우에 전달되면 학습이 완료된 딥러닝 모형을 통해 접근로별 차량대기길이가 추정된다. 접근로별 차량대기길이를 기반으로 신호시간을 산정한 후 Vissim 내부의 신호등화를 조정하여 시뮬레이션 한다. 본 연구에서 개발한 알고리즘은 현 TOD 방식에 비해 차량 지체가 약 5% 감소한 것으로 분석되었으며, 이는 네트워크 내 하나의 교차로만 대상으로 적용하여 그 효과가 제한된 것이며, 축 또는 네트워크 제어로의 공간적 확대방안을 향후연구로 제시하였다.

생성적 적대 신경망(Generative Adversarial Network)을 이용하여 획득한 18F-FDG Brain PET/CT 인공지능 영상의 비교평가 (Comparative Evaluation of 18F-FDG Brain PET/CT AI Images Obtained Using Generative Adversarial Network)

  • 김종완;김정열;임한상;김재삼
    • 핵의학기술
    • /
    • 제24권1호
    • /
    • pp.15-19
    • /
    • 2020
  • 본 연구는 최근에 활발히 연구되고 있는 딥러닝 기술인 생성적 적대 신경망(GAN)을 핵의학 영상에 적용하여 잠재적으로 유용성이 있는지 확인해보고자 하였다. 본원에서 18F-FDG Brain PET/CT검사를 진행한 30명의 환자를 대상으로 하였고 List모드로 15분 검사한 후 이를 1, 2, 3, 4, 5분 초기획득시간 이미지로 재구성하였다. 이 중 25명의 환자를 GAN모델의 학습을 위한 트레이닝 이미지로 사용하고 5명의 환자를 학습된 GAN모델의 검증을 위한 테스트 이미지로 사용하였다. 학습된 GAN모델에 입력으로 1, 2, 3, 4, 5분의 초기획득 이미지를 넣고 출력으로 15분 인공지능 표준획득 이미지를 획득한 후 이를 기존의 15분 표준획득시간 검사 이미지와 비교 평가하였다. 평가에는 정량화된 이미지 평가방법인 평균제곱오차, 최대신호 대 잡음비, 구조적 유사도 지수를 이용하였다. 평가 결과 초기획득시간 이미지에서 1에서 5분으로 갈수록 실제 표준획득시간 이미지에 가까운 평균제곱오차, 최대신호 대 잡음비, 구조적 유사도 지수 수치를 나타내었다. 이러한 연구를 통해 앞으로 인공지능 기술이 핵의학 분야에서 의료영상의 획득시간 단축과 관련하여 중요한 영향을 미칠 수 있을 것으로 사료된다.

MLOps를 위한 효율적인 AI 모델 드리프트 탐지방안 연구 (A Study on Efficient AI Model Drift Detection Methods for MLOps)

  • 이예은;이태진
    • 인터넷정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.17-27
    • /
    • 2023
  • 오늘날 AI(Artificial Intelligence) 기술이 발전하면서 실용성이 증가함에 따라 실생활 속 다양한 응용 분야에서 널리 활용되고 있다. 이때 AI Model은 기본적으로 학습 데이터의 다양한 통계적 속성을 기반으로 학습된 후 시스템에 배포되지만, 급변하는 데이터의 상황 속 예상치 못한 데이터의 변화는 모델의 성능저하를 유발한다. 특히 보안 분야에서 끊임없이 생성되는 새로운 공격과 알려지지 않은 공격에 대응하기 위해서는 배포된 모델의 Drift Signal을 찾는 것이 중요해짐에 따라 모델 전체의 Lifecycle 관리 필요성이 점차 대두되고 있다. 일반적으로 모델의 정확도 및 오류율(Loss)의 성능변화를 통해 탐지할 수 있지만, 모델 예측 결과에 대한 실제 라벨이 필요한 점에서 사용 환경의 제약이 존재하며, 실제 드리프트가 발생한 지점의 탐지가 불확실한 단점이 있다. 그 이유는 모델의 오류율의 경우 다양한 외부 환경적 요인, 모델의 선택과 그에 따른 파라미터 설정, 그리고 새로운 입력데이터에 따라 크게 영향을 받기에 해당 값만을 기반으로 데이터의 실질적인 드리프트 발생 시점을 정밀하게 판단하는 것은 한계가 존재하게 된다. 따라서 본 논문에서는 XAI(eXplainable Artificial Intelligence) 기반 Anomaly 분석기법을 통해 실질적인 드리프트가 발생한 시점을 탐지하는 방안을 제안한다. DGA(Domain Generation Algorithm)를 탐지하는 분류모델을 대상으로 시험한 결과, 배포된 이후 데이터의 SHAP(Shapley Additive exPlanations) Value를 통해 Anomaly score를 추출하였고, 그 결과 효율적인 드리프트 시점탐지가 가능함을 확인하였다.

인지 무선 시스템에서 웨이블릿 패킷 분해를 이용한 서포트 벡터 머신 기반 스펙트럼 센싱 (Spectrum Sensing based on Support Vector Machine using Wavelet Packet Decomposition in Cognitive Radio Systems)

  • 이규형;이영두;구인수
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.81-88
    • /
    • 2018
  • 부사용자가 주사용자의 주파수 사용 상태를 판별하기 위해 인지 무선 시스템의 핵심 기술인 스펙트럼 센싱을 사용한다. 스펙트럼 센싱 기법 중 에너지 검출법은 할당 된 채널 신호의 강도에 따라서 주사용자의 주파수 사용 유무를 판별한다. 이 기법은 단순히 신호의 크기를 이용해 스펙트럼 센싱하기 때문에 SNR 대역이 낮아질수록 주사용자의 신호를 검출하기 어렵다는 단점이 있다. 본 논문은 낮은 SNR 대역에서의 성능 열화를 극복하기 위해 웨이블릿 패킷 분해를 사용한 서포트 벡터 머신을 스펙트럼 센싱과 융합하는 방식을 제안하였다. 이 방식은 센싱 신호를 웨이블릿 패킷 분해를 기반으로 특징 추출하여 Support Vector Machine의 훈련과 실험용 데이터로 사용한다. 제안한 방식의 실험 결과를 SNR대역에 대해 정확도와 ROC 커브 그래프의 AUC를 이용하여 에너지 검출법과 비교하였다. 실험 결과, 제안한 시스템은 낮은 SNR대역에서 에너지 검출법 보다 더 향상된 판별 성능을 보였다.

험로 주행용 무인차량과 차량 시뮬레이터의 융합을 위한 퍼지 알고리즘 개발 (Fuzzy Algorithm Development for the Integration of Vehicle Simulator with All Terrain Unmanned Vehicle)

  • 윤득선;유환신;임하영
    • 지능정보연구
    • /
    • 제11권2호
    • /
    • pp.47-57
    • /
    • 2005
  • 본 논문에서는 험로를 주행하는 무인 자동차의 운동을 재현하는 차량 시뮬레이터의 운동큐를 생성함에 있어서 중요한 인자들을 결정할 때 충실한 재현을 위하여 필터를 적용하였다. 그러나 필터의 성능한계와 차량운동을 재현하는 워시아웃 알고리즘의 한계를 극복하기 위한 방안으로 퍼지논리를 이용한 필터의 설계를 하여 실차 실험에 적용하였고 향후의 연구방향을 제시하였다.

  • PDF