• 제목/요약/키워드: signal converter

검색결과 944건 처리시간 0.022초

New Single-Phase Power Converter Topology for Frequency Changing of AC Voltage

  • Jou, Hurng-Liahng;Wu, Jinn-Chang;Wu, Kuen-Der;Huang, Ting-Feng;Wei, Szu-Hsiang
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.694-701
    • /
    • 2018
  • This paper proposes a new single-phase power converter topology for changing the frequency of AC voltage. The proposed single-phase frequency converter (SFC) includes a T-type multi-level power converter (TMPC), a frequency decoupling transformer (FDT) and a digital signal processor (DSP). The TMPC can convert a 60 Hz AC voltage to a DC voltage and then convert the DC voltage to a 50 Hz AC voltage. Therefore, the output currents of the two T-type power switch arms have 50 Hz and 60 Hz components. The FDT is used to decouple the 50 Hz and 60 Hz components. The salient feature of the proposed SFC is that only one power electronic converter stage is used since the functions of the AC-DC and DC-AC power conversions are integrated into the TMPC. Therefore, the proposed SFC can simplify both the power circuit and the control circuit. In order to verify the functions of the proposed SFC, a hardware prototype is established. Experimental results verify that the performance of the proposed SFC is as expected.

2단 역률보상회로를 구성하는 Interleaved 승압형 컨버터의 해석 및 설계 (Analysis and Design of Interleaved Boost Power Factor Corrector on Two Stage AC/DC PFC Converter)

  • 허태원;손영대;김동완;김춘삼;박한석;우정인
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권7호
    • /
    • pp.343-351
    • /
    • 2003
  • In this paper, interleaved boost converter is applied as a first-stage converter in switch mode power supply. The first-stage converter plays a role to improve power factor. Interleaved Boost Power Factor Corrector(IBPFC) can reduce input current ripple as a single voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. Each converter cell is also operated in discontinuous current mode and inductor current of each converter is discontinuous. Total input current which is composed by each converter cell is continuous current. Thus, IBPFC is able to improve input current ripple. IBPFC operating in discontinuous current mode can be classified as six modes from switching state and be carried out state space averaging small signal modeling. A control transfer function is obtained according to the modeling. Not only steady-state characteristics but also dynamic characteristics is considered. Single voltage control loop is also constructed by the control transfer function. From experimental result, improvement of power factor and input current ripple are verified.

태양광 발전 시스템에서의 벅 컨버터 모델링과 해석 (Modeling and Analysis of The Buck Converter in Photovoltaic Power Conditioning System)

  • 정승환;최익;최주엽
    • 한국전자통신학회논문지
    • /
    • 제8권7호
    • /
    • pp.1039-1048
    • /
    • 2013
  • 일반적으로 벅 컨버터 제어기는 컨버터의 출력 전압을 제어하도록 설계하지만, 태양광발전시스템에서의 벅 컨버터 제어기는 설계 방식을 달리 구분해야 한다. 본 논문에서는 MPPT(Maximum Power Point Tracking)을 위하여 벅 컨버터의 입력 전압(태양광전지의 출력 전압)을 제어한다고 가정하였다. 또한, 컨버터의 입력 전압을 제어하기 위한 새로운 벅 컨버터 모델을 제시한다. 이 컨버터 모델은 최대전력점(MPP)에서 동작점을 두어 선형화한 태양광전지의 모델을 포함하며, 모델의 타당성을 검증하기 위하여 대신호와 소신호로 나누어 분석한다. 또한 일반적인 선형제어기를 설계하였을 때, 제어 가능성을 분석하여 검증한다.

A Novel Three Phase Series-Parallel Resonant Converter Fed DC-Drive System

  • Daigavane, Manoj;Suryawanshi, Hiralal;Khan, Jawed
    • Journal of Power Electronics
    • /
    • 제7권3호
    • /
    • pp.222-232
    • /
    • 2007
  • This paper presents the application of a single phase AC-to-DC converter using a three-phase series parallel (SPRC) resonant converter to variable speed dc-drive. The improved power quality converter gives the input power factor unity over a wide speed range, reduces the total harmonic distortion (THD) of ac input supply current, and makes very low ripples in the armature current and voltage waveform. This soft-switching converter not only possesses the advantages of achieving high switching frequencies with practically zero switching losses but also provides full ranges of voltage conversion and load variation. The proposed drive system is the most appropriate solution to preserve the present separately excited de motors in industry compared with the use of variable frequency ac drive technology. The simulation and experimental results are presented for variable load torque conditions. The variable frequency control scheme is implemented using a DSP- TMS320LF2402. This control reduces the switching losses and current ripples, eliminates the EMI and improves the efficiency of the drive system. Experimental results confirm the consistency of the proposed approach.

스마트기기용 강압형 DC-DC 변환기 특성해석 (Analysis of a Buck DC-DC Converter for Smart Electronic Applications)

  • 강보경;나재훈;송한정
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.373-379
    • /
    • 2019
  • Nowadays, the IoT portable electronic devices have become more useful and diverse, so they require various supply voltage levels to operate. This paper presents a DC-DC buck converter with pulse width modulation (PWM) for portable electronic devices. The proposed step-down DC-DC converter consists of passive elements such as capacitors, inductors, and resistors and an integrated chip (IC) for signal control to reduce power consumption and improves ripple voltage with the resolution. The proposed DC-DC converter is simulated and analyzed in PSPICE circuit design platform, and implemented on the prototype PCB board with a Texas Instruments LM5165 IC. The proposed buck converter is showed 92.6% of peak efficiency including a load current range of 4-10 mA, 3.29 mV of the voltage ripple at 5 V output voltage for the supply voltage 12 V. Measured and Simulated power efficiency are made good agreement with each other.

태양광 발전 시스템용 3-레벨 부스트 컨버터 제어기 설계에 관한 연구 (A Study on the Controller Design of the Three-Level Boost Converter for Photovoltaic Power Conditioning System)

  • 이규민;김일송
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.227-236
    • /
    • 2021
  • This research proposes a modeling and controller design of a three-level boost (TLB) converter for the implementation of maximum power point tracking (MPPT) in the photovoltaic power conditioning system (PCS). Contrary to the output voltage control of the conventional controller, the Photovoltaic PCS requires an input voltage controller for MPPT operation. A TLB converter has the advantage of decreasing the inductor size and increasing efficiency compared with the existing booster converter. However, an optimal controller is difficult to design due to the complexity of the TLB operations, which have two operational modes on the duty ratio boundary of 0.5. Therefore, the unified linear model equations of the TLB converters, which can be applicable to both operational modes, are derived using linearized solar cell expressions. Furthermore, the transfer functions are obtained for the controller design. The MPPT voltage controller is designed using MATLAB SISOTOOL. In addition, a controller for capacitor voltage unbalancing is described and designed. The simulations and experimental verifications are conducted to verify the effectiveness of the small-signal analysis and control system design.

Small-Signal Modeling and Control of Three-Phase Bridge Boost Rectifiers under Non-Sinusoidal Conditions

  • Chang, Yuan;Jinjun, Liu;Xiaoyu, Wang;Zhaoan, Wang
    • Journal of Power Electronics
    • /
    • 제9권5호
    • /
    • pp.757-771
    • /
    • 2009
  • This paper proposes a systematic approach to the modeling of the small-signal characteristics of three-phase bridge boost rectifiers under non-sinusoidal conditions. The main obstacle to the conventional synchronous d-q frame modeling approach is that it is unable to identify a steady-state under non-sinusoidal conditions. However, for most applications under non-sinusoidal conditions, the current loops of boost rectifiers are designed to have a bandwidth that is much higher than typical harmonics frequencies in order to achieve good current control for these harmonic components. Therefore a quasi-static method is applied to the proposed modeling approach. The converter small-signal characteristics developed from conventional synchronous frame modeling under different operating points are investigated and a worst case point is then located for the current loop design. Both qualitative and quantitative analyses are presented. It is observed that operating points influence the converter low frequency characteristics but hardly affect the dominant poles. The relationship between power stage parameters, system poles and zeroes is also presented which offers good support for the system design. Both the simulation and experimental results verified the analysis and proposed modeling approach. Finally, the practical case of a parallel active power filter is studied to present the modeling approach and the resultant regulator design procedure. The system performance further verifies the whole analysis.

Effects of Wind Generation Uncertainty and Volatility on Power System Small Signal Stability

  • Shi, Li-Bao;Kang, Li;Yao, Liang-Zhong;Qin, Shi-Yao;Wang, Rui-Ming;Zhang, Jin-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.60-70
    • /
    • 2014
  • This paper discusses the impacts of large scale grid-connected wind farm equipped with permanent magnet synchronous generator (PMSG) on power system small signal stability (SSS) incorporating wind generation uncertainty and volatility. Firstly, a practical simplified PMSG model with rotor-flux-oriented control strategy applied is derived. In modeling PMSG generator side converter, the generator-voltage-oriented control strategy is utilized to implement the decoupled control of active and reactive power output. In modeling PMSG grid side converter, the grid-voltage-oriented control strategy is applied to realize the control of DC link voltage and the reactive power regulation. Based on the Weibull distribution of wind speed, the Monte Carlo simulation technique based is carried out on the IEEE 16-generator-68-bus test system as benchmark to study the impacts of wind generation uncertainty and volatility on small signal stability. Finally, some preliminary conclusions and comments are given.

A Design of A Multistandard Digital Video Encoder using a Pipelined Architecture

  • Oh, Seung-Ho;Park, Han-Jun;Kwon, Sung-Woo;Lee, Moon-Key
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권5호
    • /
    • pp.9-16
    • /
    • 1997
  • This paper describes the design of a multistandard video encoder. The proposed encoder accepts conventional NTSC/PAL video signals, It also processes he PAL-plus video signal which is now popular in Europe. The encoder consists of five major building functions which are letter-box converter, color space converter, digital filters, color modulator and timing generator. In order to support multistandard video signals, a programmable systolic architecture is adopted in designing various digital filters. Interpolation digital filters are also used to enhance signal-to-noise ratio of encoded video signals. The input to the encoder can be either YCbCr signal or RGB signal. The outputs re luminance(Y), chrominance(C), and composite video baseband(Y+C) signals. The architecture of the encoder is defined by using Matlab program and is modelled by using Veriflog-HDL language. The overall operation is verified by using various video signals, such as color bar patterns, ramp signals, and so on. The encoder contains 42K gates and is implemented by using 0.6um CMOS process.

  • PDF

링발진기를 이용한 CMOS 온도센서 설계 (Design of CMOS Temperature Sensor Using Ring Oscillator)

  • 최진호
    • 한국정보통신학회논문지
    • /
    • 제19권9호
    • /
    • pp.2081-2086
    • /
    • 2015
  • 링 발진기를 이용한 온도센서를 공급전압 1.5volts를 사용하여 0.18㎛ CMOS 공정으로 설계하였다. 온도센서는 온도가 변화하더라도 일정한 출력주파수를 가지는 링 발진기와 온도가 증가하면 출력주파수가 감소하는 링 발진기를 이용하여 설계하였다. 온도를 디지털 값으로 변환하기 위해 온도에 무관한 링 발진기의 출력 신호는 카운터의 클럭 신호로 사용하였으며, 온도에 따라 변화하는 링 발진기의 출력신호는 카운터의 인에이블 신호로 사용하였다. 설계된 회로의 HPICE 시뮬레이션 결과 회로의 동작온도가 -20℃에서 70℃까지 변화할 때 온도 에러는 -0.7℃에서 1.0℃ 이내였다.