• Title/Summary/Keyword: siderophore(s)

Search Result 83, Processing Time 0.021 seconds

The Effects of Ginseng Saponin Fraction on Growth and Siderophore Formation in Eseherichia coli K-12 (인삼사포닌 분획이 Escherichia coli K-12의 성장과 Siderophore 생성에 미치는 영향)

  • 조영동;이용범
    • Journal of Ginseng Research
    • /
    • v.7 no.2
    • /
    • pp.102-107
    • /
    • 1983
  • The effects of saponin, one of major components (Panax ginseng C.A. Meyer), on the growth of E. coli K-12 and the formation of siderphore was observed The following results were obtained. 1. When E. coli was grown on medium containing 1${\times}$10-5%-11${\times}$10-1% of the saponin, the rate of growth was stimulated at 10-1% of the saponin significantly compared to that of control. 2. When E. coli K-12 was grown on medium containing 1${\times}$10-1% of the saponin, the amount of siderphore was two times as much as the control. 3. The growth of E. coli was observed to be dependent on the concentration of siderophore when siderophore was added to medium. 4. The effect of saponin on the formation of siderophore in vitro was observed to reach maximum at 1${\times}$10-3% of the saponin. Such results suggest that the growth rate of E. coli K-12 could be enhanced by ginseng saponin fraction through stimulation of siderphore formation. We have described the fast growth of E. coli, K-12 and B. subtilis, rapid uptake of 14C-glucose, and high level of other metabolites such as lipids and proteins of E. coli, and B. subtilis in medium containing saponing fraction compared to that of microorganisms without saponin fraction.1∼3Such differences were claimed to be due to rapid uptake of 14C-glucose by widened periplasmic region throught unknown mechanism in the prescence of saponin fraction in medium3 and have raised a question whether there is another possible factor, siderophore4(Greek for iron bears), since microorganisms must secure a sufficient amount of iron for normal growth. These are known to be synthesized by the cells under iron-deficient condition and in most case, excreted into the medium5, where they can complex and solubilize any iron present there. It is generally believed that these complexes are then taken into the cells presumably by specific transport systems, thus providing iron for cell metabolism. Within the group of enteric bacteria, only three species (E. coli, S. typhimurium, and A. aerogense) have, so far, been studied in a ny detail. The main iron-binding compound produced by these species is enterochelin, and its role in iron transport is now well established. And biosynthesis of enterochelin from 2, 3- dihydroxybenzoate and serine in the prescence of magnesium ions and ATP was reported6. 2, 3-dihydroxybenzoate was also shown to involve isochorismate and 2, 3-dihydro-2, 3-dihydroxybenzoate as intermediate.7∼11 The present paper deals with the effect of ginseng saponin fraction on growth, the level of enterochelin formation in vivo and the conversion of 2, 3-dihydroxybenzoate and serine into entrochelin in vitro, and entrochelin obtained on the growth in relation to possible explanation of ginseng saponin fraction on the rapid growth of E. coli, K-12.

  • PDF

Isolation and Characteristics of Bacteria Showing Biocontrol and Biofertilizing Activities (생물방제 및 생물비료 활성을 가지는 세균의 분리 및 특성)

  • Jung, Ho-Il;Kim, Keun-Ki;Park, Hyean-Cheal;Lee, Sang-Mong;Kim, Yong-Gyun;Kim, Hong-Sung;Lee, Cnung-Yeol;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1682-1688
    • /
    • 2007
  • To develop multifunctional microbial inoculant, microorganisms with antagonistic activity and biofertilizing activity were screened. Pantoea agglomerans and Bacillus megaterium from our laboratory culture collection, and strain MF12 from soil near poultry farm in Miryang were selected. On the basis of morphological, physiological studies and 16S rDNA sequence analysis, isolate MF12 was identified as the Bacillus pumilis. Three strains were studied for insoluble phosphate solubilization, indole-3-acetic acid (IAA) and siderophore production, ammonification ability, hydrolytic enzyme production and antifungal activity against phytopathogenic fungi. P. agglomerans did not produce any visible clear zone on agar plate containing 0.5% $Ca_3(PO_4){_2}$ as a sole phosphorus source. However, this strain could solubilize insoluble phosphate in liquid medium. All strains produced IAA ranged from $3{\sim}639{\mu}g/ml$ depending on culture time and had ammonification ability. Among three strains, only P. agglomerans produced siderophore. P. agglomerans produced pectinase and lipase, B. megaterium produced amylase, protease and lipase while B. pumilis produced protease and lipase. P. agglomerans showed antifungal activities against phytopathogenic fungi, Fusarium oxysporum and Colletotrichum gloeosporioides. B. pumilis showed antifungal activities against Botrytis cinerea, Sclerotinia sclerotiorum and Phythium ultimum.

Antibiotic Production of Pseudomonas otitidis PS and Mode of Action (Pseudomonas otitidis PS 균주의 항생물질 생산과 작용 기작)

  • Ahn, Kyung-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.40-44
    • /
    • 2018
  • An isolate capable of inhibiting the growth of gram-positive bacteria was obtained from the soil of Mushim stream, Cheongju. The isolate was identified as Pseudomonas otitidis PS by 16S rRNA gene sequence analysis. P. otitidis PS produced antibiotics as a secondary metabolite when cultured in 1% soybean meal with 0.5% glucose. The maximum yield was about 0.1%. The antibiotic substance of P. otitidis PS extracted using ethyl acetate displayed a minimum inhibitory concentration of $2{\mu}g/ml$ for Staphylococcus aureus KCTC 1261. The antibiotic substance produced an orange halo on chrome azurol S agar due to siderophore activity. Growth inhibition was decreased when the iron was depleted. Since the antibiotic activity was lost upon the addition of the reducing agent ascorbic acid or during anaerobic culture, it was considered that antibiotic of P. otitidis PS strain exerts its bactericidal effect by the generation of reactive oxygen species.

Staphylococcus aureus Siderophore-Mediated Iron-Acquisition System Plays a Dominant and Essential Role in the Utilization of Transferrin-Bound Iron

  • Park Ra Young;Sun Hui Yu;Choi Mi Hwa;Bai Young Hoon;Shin Sung Heui
    • Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.183-190
    • /
    • 2005
  • Staphylococcus aureus is known to be capable of utilizing transferrin-bound iron, via both siderophore­and transferrin-binding protein (named IsdA)-mediated iron-acquisition systems. This study was designed in order to determine which iron-acquisition system plays the essential or dominant role with respect to the acquisition of iron from human transfenin, in the growth of S. aureus. Holotransferrin (HT) and partially iron-saturated transferrin (PT), but not apotransferrin (AT), were found to stimulate the growth of S. aureus. S. aureus consumed most of the transferrin-bound iron during the exponential growth phase. Extracellular proteases were not, however, involved in the liberation of iron from transferrin. Transferrin-binding to the washed whole cells via IsdA was not observed during the culture. The expression of IsdA was observed only in the deferrated media with AT, but not in the media supplemented with PT or HT. In contrast, siderophores were definitely produced in the deferrated media with PT and HT, as well as in the media supplemented with AT. The siderophores proved to have the ability to remove iron directly from transferrin, but the washed whole cells expressing IsdA did not. In the bioassay, the growth of S. aureus on transferrin-bound iron was stimulated by the siderophores alone. These results demonstrate that the siderophore-mediated iron-acquisition system plays a dominant and essential role in the uptake of iron from transferrin, whereas the IsdA-mediated iron-acquisition system may play only an ancillary role in the uptake of iron from transferrin.

The RpoS Sigma Factor Negatively Regulates Production of IAA and Siderophore in a Biocontrol Rhizobacterium, Pseudomonas chlororaphis O6

  • Oh, Sang A;Kim, Ji Soo;Park, Ju Yeon;Han, Song Hee;Dimkpa, Christian;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.323-329
    • /
    • 2013
  • The stationary-phase sigma factor, RpoS, influences the expression of factors important in survival of Pseudomonas chlororaphis O6 in the rhizosphere. A partial proteomic profile of a rpoS mutant in P. chlororaphis O6 was conducted to identify proteins under RpoS regulation. Five of 14 differentially regulated proteins had unknown roles. Changes in levels of proteins in P. chlororaphis O6 rpoS mutant were associated with iron metabolism, and protection against oxidative stress. The P. chlororaphis O6 rpoS mutant showed increased production of a pyoverdine-like siderophore, indole acetic acid, and altered isozyme patterns for peroxidase, catalase and superoxide dismutase. Consequently, sensitivity to hydrogen peroxide exposure increased in the P. chlororaphis O6 rpoS mutant, compared with the wild type. Taken together, RpoS exerted regulatory control over factors important for the habitat of P. chlororaphis O6 in soil and on root surfaces. The properties of several of the proteins in the RpoS regulon are currently unknown.

Proteomic Analysis of the GacA Response Regulator in Pseudomonas chlororaphis O6

  • Anderson, Anne J.;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.24 no.2
    • /
    • pp.162-169
    • /
    • 2018
  • The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulatory system of many traits relevant to the plant probiotic nature of this bacterium. The work in this paper elucidates proteins using proteomics approach in P. chlororaphis O6 under the control of the cytoplasmic regulatory protein, GacA. A gacA mutant of P. chlororaphis O6 showed loss in production of phenazines, acyl homoserine lactones, hydrogen cyanide, and protease, changes that were associated with reduced in vitro antifungal activity against plant fungal pathogens. Production of iron-chelating siderophore was significantly enhanced in the gacA mutant, also paralleling changes in a gacS mutant. However, proteomic analysis revealed proteins (13 downregulated and 7 upregulated proteins in the mutant compared to parental strain) under GacA control that were not apparent by a proteomic study of a gacS mutant. The putative identity of the downregulated proteins suggested that a gacA mutant would have altered transport potentials. Notable would be a predicted loss of type-VI secretion and PEP-dependent transport. Study of mutants of these GacA-regulated proteins will indicate further the features required for probiotic potential in this rhizobacterium.

Production, Purification, and Characterization of Antifungal Metabolite from Pseudomonas aeruginosa SD12, a New Strain Obtained from Tannery Waste Polluted Soil

  • Dharni, Seema;Alam, Mansoor;Kalani, Komal;Abdul-Khaliq, Abdul-Khaliq;Samad, Abdul;Srivastava, Santosh Kumar;Patra, Dharani Dhar
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.674-683
    • /
    • 2012
  • A new strain, SD12, was isolated from tannery waste polluted soil and identified as Pseudomonas aeruginosa on the basis of phenotypic traits and by comparison of 16S rRNA sequences. This bacterium exhibited broad-spectrum antagonistic activity against phytopathogenic fungi. The strain produced phosphatases, cellulases, proteases, pectinases, and HCN and also retained its ability to produce hydroxamate-type siderophore. A bioactive metabolite was isolated from P. aeruginosa SD12 and was characterized as 1-hydroxyphenazine ((1-OH-PHZ) by nuclear magnetic resonance (NMR) spectral analysis. The strain was used as a biocontrol agent against root rot and wilt disease of pyrethrum caused by Rhizoctonia solani. The stain is also reported to increase the growth and biomass of Plantago ovata. The purified compound, 1-hydroxyphenazine, also showed broad-spectrum antagonistic activity towards a range of phytopathogenic fungi, which is the first report of its kind.

Selection and Antagonistic Mechanism of Pseudomonas fluorescens 4059 Against Phytophthora Blight Disease (고추역병과 시들음병을 방제하는 토착길항세균 Pseudomonas fluorescens 4059의 선발과 길항기작)

  • Jeong, Hui-Gyeong;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.312-316
    • /
    • 2004
  • In oder to select the powerful rhizophere-dorminatable biocontrol agent, we had isolated an indigenous antagonistic bacterium which produced antibiotic and siderophore from a disease suppressive local field soil of Gyungsan, Korea. And we could select the Pseudomosp. 4059 which can strongly antagonize against Fusarium oxysporum and Phytophthora capsici by two kinds of antifungal mechanism that can be caused by the antibiotic of Phenazin, a siderophore and a auxin like subThe selected strain was identified as Pseudomonas fluorescens (biotype A) 4059 by biochemical tests, API $\textregistered$ test, MicroLog TM system and 16S rDNA analysis. The selected antagonistic microorganism, Pseudomosp. 4059 had an antifungal mechanism of antifungal antibiotic and sidrophore. And we were confirmed the antagonistic activity of P fluorescens 4059 with in vitro antifungal test against Phytophthora capsici and in vivo by red-pepper.

Antifungal Activity of Bacillus sp. GJ-1 Against Phytophthora capsici (Bacillus sp. GJ-1의 Phytophthora capsici에 대한 항진균활성)

  • Lee, Gun-Joo;Han, Joon-Hee;Shin, Jong-Hwan;Kim, Heung Tae;Kim, Kyoung Su
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.112-117
    • /
    • 2013
  • Phytophthora capsici is one of major limiting factors in production of pepper and other important crops worldwide by causing foliage blight and rot on fruit and root. Increased demand for the replacement of fungicides has led to searching a promising strategy to control the fungal diseases. To meet eco-friendly agriculture practice, we isolated microorganisms and assessed their beneficial effects on plant health and disease control efficacy. A total of 360 bacterial strains were isolated from rhizosphere soil of healthy pepper plants, and categorized to 5 representative isolates based on colony morphology. Among the 5 bacterial strains (GJ-1, GJ-4, GJ-5, GJ-11, GJ-12), three bacterial strains (GJ-1, GJ-11, GJ-12) presented antifungal activity against P. capsici in an fungal inhibition assay. In phosphate solubilization and siderophore production, the strain GJ-1 was more effective than others. The strain GJ-1 was identified as Bacillus sp. using 16S rDNA analysis. Bacillus sp. GJ-1 was also found to be effective in inhibiting other plant pathogenic fungi, including Rhizoctonia solani, Pythium ultimum and Fusarium solani. Therefore, the Bacillus sp. GJ-1 can serve as a biological control agent against fungal plant pathogens.

Inhibition of yeast Candida growth by protein antibiotic produced from Pseudomonas fluorescens BB2 (Pseudomonas fluorescens BB2 균주가 생산하는 단백질성 항생물질에 의한 효모 Candida 생육 억제)

  • Ahn, Kyung-Joon
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.448-452
    • /
    • 2015
  • The bacterial strain that was isolated from chinese cabbage rhizosphere, showed inhibition of yeast growth. This strain was identified as Pseudomonas fluorescens BB2 by API 20NE test and 16S rRNA gene sequence analysis. P. fluorescens BB2 strain produced antibiotics against yeast as a secondary metabolite effectively when the culture was carried out in YM medium with 3% glucose at $20^{\circ}C$. The protein antibiotic of BB2 strain which was concentrated by ammonium sulfate precipitation and n-butanol extraction inhibited the growth of yeast with the minimal inhibitory concentration of $10{\mu}g/ml$ against Candida albicans KCTC 7965, and the growth of yeast was completely inhibited at $80{\mu}g/ml$. The hydrophilic fraction of n-butanol extraction inhibited the growth of Bacillus cereus ATCC 21366, showed orange halo on chrome azurol S plate, which means the fraction contained iron chelating siderophore. The results of crystal violet uptake through the cell membrane showed that membrane permeability was increased about 9% than control, when the concentration of hydrophobic antibiotic against yeast C. albicans was $60{\mu}g/ml$. As a result, the antibiotic produced by P. fluorescens BB2 against yeast Candida is considered antimicrobial peptide, and this is the first report in the genus Pseudomonas.