Browse > Article
http://dx.doi.org/10.5423/RPD.2018.24.2.162

Proteomic Analysis of the GacA Response Regulator in Pseudomonas chlororaphis O6  

Anderson, Anne J. (Department of Biological Engineering, Utah State University)
Kim, Young Cheol (Department of Applied Biology, Chonnam National University)
Publication Information
Research in Plant Disease / v.24, no.2, 2018 , pp. 162-169 More about this Journal
Abstract
The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulatory system of many traits relevant to the plant probiotic nature of this bacterium. The work in this paper elucidates proteins using proteomics approach in P. chlororaphis O6 under the control of the cytoplasmic regulatory protein, GacA. A gacA mutant of P. chlororaphis O6 showed loss in production of phenazines, acyl homoserine lactones, hydrogen cyanide, and protease, changes that were associated with reduced in vitro antifungal activity against plant fungal pathogens. Production of iron-chelating siderophore was significantly enhanced in the gacA mutant, also paralleling changes in a gacS mutant. However, proteomic analysis revealed proteins (13 downregulated and 7 upregulated proteins in the mutant compared to parental strain) under GacA control that were not apparent by a proteomic study of a gacS mutant. The putative identity of the downregulated proteins suggested that a gacA mutant would have altered transport potentials. Notable would be a predicted loss of type-VI secretion and PEP-dependent transport. Study of mutants of these GacA-regulated proteins will indicate further the features required for probiotic potential in this rhizobacterium.
Keywords
GacA response regulator; Proteomic analysis; Type 6 secretion system; Siderophore;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kim, C. H., Kim, Y. H., Anderson, A. J. and Kim, Y. C. 2014a. Proteomic analysis of a global regulator GacS sensor kinase in the rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 30: 220-227.   DOI
2 Kim, J. S., Kim, Y. H., Anderson, A. J. and Kim, Y. C. 2014b. The sensor kinase GacS negatively regulates flagellar formation and motility in a biocontrol bacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 30: 215-219.   DOI
3 Kim, J. S., Kim, Y. H., Park, J. Y., Anderson, A. J. and Kim, Y. C. 2014c. The global regulator GacS regulates biofilm formation in Pseudomonas chlororaphis O6 differently with carbon source. Can. J. Microbiol. 60: 133-138.   DOI
4 Kim, Y. C. and Anderson, A. J. 2018. Rhizosphere pseudomonads as probiotics improving plant health. Mol. Plant Pathol. DOI: 10.1111/mpp.12693. (In press)   DOI
5 Kim, Y. C., Leveau, J., McSpadden Gardener, B. B., Pierson, E. A., Pierson, L. S., 3rd and Ryu, C. M. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77: 1548-1555.   DOI
6 Lee, J. H., Ma, K. C., Ko, S. J., Kang, B. R., Kim, I. S. and Kim, Y. C. 2011. Nematicidal activity of a nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr. Microbiol. 62: 746-751.   DOI
7 Li, J., Yang, Y., Dubern, J. F., Li, H., Halliday, N., Chernin, L., Gao, K. et al. 2015. Regulation of GacA in Pseudomonas chlororaphis strains shows a niche specificity. PLoS One 10: e0137553.   DOI
8 Liu, Y., Wang, Z., Bilal, M., Hu, H., Wang, W., Huang, X. et al. 2018. Enhanced fluorescent siderophore biosynthesis and loss of phenazine-1-carboxamide in phenotypic variant of Pseudomonas chlororaphis HT66. Front. Microbiol. 9: 759.   DOI
9 Loper, J. E., Hassan, K. A., Mavrodi, D. V., Davis, E. W., 2nd, Lim, C. K., Shaffer, B. T. et al. 2012. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genetics 8: e1002784.   DOI
10 McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M. et al. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143: 3703-3711.   DOI
11 Miller, C. D., Kim, Y. C. and Anderson, A. J. 1997. Cloning and mutational analysis of the gene for the stationary-phase inducible catalase (catC) from Pseudomonas putida. J. Bacteriol. 179: 5241-5245.   DOI
12 Natsch, A., Keel, C., Pfirter, H. A., Haas, D. and Defago, G. 1994. Contribution of the global regulator gene gacA to persistence and dissemination of Pseudomonas fluorescens biocontrol strain CHA0 introduced into soil microcosms. Appl. Environ. Microbiol. 60: 2553-2560.
13 Oh, S. A., Kim, J. S., Han, S. H., Park, J. Y., Dimkpa, C., Edlund, C. et al. 2013a. The GacS-regulated sigma factor RpoS governs production of several factors involved in biocontrol activity of the rhizobacterium Pseudomonas chlororaphis O6. Can. J. Microbiol. 59: 556-562.   DOI
14 Oh, S. A., Kim, J. S., Park, J. Y., Han, S. H., Dimkpa, C., Anderson, A. J. et al. 2013b. The RpoS sigma factor negatively regulates production of IAA and siderophore in a biocontrol rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 29: 323-329.   DOI
15 Russell, D. W. and Sambrook, J. 2001. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA, 999 pp.
16 Park, J. Y., Kang, B. R., Ryu, C. M., Anderson, A. J. and Kim, Y. C. 2018. Polyamine is a critical determinant of Pseudomonas chlororaphis O6 for GacS-dependent bacterial cell growth and biocontrol capacity. Mol. Plant Pathol. 19: 1257-1266.   DOI
17 Records, A. R. 2011. The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol. Plant Microbe Interact. 24: 751-757.   DOI
18 Records, A. R. and Gross, D. C. 2010. Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J. Bacteriol. 192: 3584-3596.   DOI
19 Ryu, C. M., Kang, B. R., Han, S. H., Cho, S. M., Kloepper, J. W., Anderson, A. J. et al. 2007. Tobacco cultivars vary in induction of systemic resistance against Cucumber mosaic virus and growth promotion by Pseudomonas chlororaphis O6 and its gacS mutant. Eur. J. Plant Pathol. 119: 383-390.   DOI
20 Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56.   DOI
21 Seaton, S. C., Silby, M. W. and Levy, S. B. 2013. Pleiotropic effects of GacA on Pseudomonas fluorescens Pf0-1 in vitro and in soil. Appl. Environ. Microbiol. 79: 5405-5410.   DOI
22 Bernal, P., Llamas, M. A. and Filloux, A. 2018. Type VI secretion systems in plant-associated bacteria. Environ. Microbiol. 20: 1-15.   DOI
23 Anderson, A. J. and Kim, Y. C. 2018. Biopesticides produced by plant-probiotic Pseudomonas chlororaphis isolates. Crop Protect. 105: 62-69.   DOI
24 Anderson, A. J., Kang, B. R. and Kim, Y. C. 2017. The Gac/Rsm signaling pathway of a biocontrol bacterium, Pseudomonas chlororaphis O6. Res. Plant Dis. 23: 212-227.   DOI
25 Bernal, P., Allsopp, L. P., Filloux, A. and Llamas, M. A. 2017. The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J. 11: 972-987.   DOI
26 Chen, L., Zou, Y., She, P. and Wu, Y. 2015. Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol. Res. 172: 19-25.   DOI
27 Decoin, V., Barbey, C., Bergeau, D., Latour, X., Feuilloley, M. G. J., Orange, N. et al. 2014. A type VI secretion system is involved in Pseudomonas fluorescens bacterial competition. PLoS One 9: e89411.   DOI
28 Hassan, K. A., Johnson, A., Shaffer, B. T., Ren, Q., Kidarsa, T. A., Elbourne, L. D. H. et al. 2010. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ. Microbiol. 12: 899-915.   DOI
29 Elhai, J. and Wolk, C. P. 1988. A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68: 119-138.   DOI
30 Gallique, M., Decoin, V., Barbey, C., Rosay, T., Feuilloley, M. G. J., Orange, N. et al. 2017. Contribution of the Pseudomonas fluorescens MFE01 type VI secretion system to biofilm formation. PLoS One 12: e0170770.   DOI
31 Heeb, S. and Haas, D. 2001. Regulatory roles of the GacS/GacA two-component system in plant-associated and other gramnegative bacteria. Mol. Plant MIcrobe Interact. 14: 1351-1363.   DOI
32 Kang, B. R., Anderson, A. J. and Kim, Y. C. 2018. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 exhibits nematicidal activity against Meloidogyne hapla. Plant Pathol. J. 34: 35-43.
33 Kang, B. R., Cho, B. H., Anderson, A. J. and Kim, Y. C. 2004. The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325: 137-143.   DOI
34 Kang, B. R., Han, S. H., Zdor, R. E., Anderson, A. J., Spencer, M., Yang, K. Y. et al. 2007. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, gacS. J. Microbiol. Biotech. 17: 586-593.
35 Kang, B. R., Yang, K. Y., Cho, B. H., Han, T. H., Kim, I. S., Lee, M. C. et al. 2006. Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr. Microbiol. 52: 473-476.   DOI