Browse > Article
http://dx.doi.org/10.4014/mbl.1712.12004

Antibiotic Production of Pseudomonas otitidis PS and Mode of Action  

Ahn, Kyung-Joon (Department of Biology Education, Seowon University)
Publication Information
Microbiology and Biotechnology Letters / v.46, no.1, 2018 , pp. 40-44 More about this Journal
Abstract
An isolate capable of inhibiting the growth of gram-positive bacteria was obtained from the soil of Mushim stream, Cheongju. The isolate was identified as Pseudomonas otitidis PS by 16S rRNA gene sequence analysis. P. otitidis PS produced antibiotics as a secondary metabolite when cultured in 1% soybean meal with 0.5% glucose. The maximum yield was about 0.1%. The antibiotic substance of P. otitidis PS extracted using ethyl acetate displayed a minimum inhibitory concentration of $2{\mu}g/ml$ for Staphylococcus aureus KCTC 1261. The antibiotic substance produced an orange halo on chrome azurol S agar due to siderophore activity. Growth inhibition was decreased when the iron was depleted. Since the antibiotic activity was lost upon the addition of the reducing agent ascorbic acid or during anaerobic culture, it was considered that antibiotic of P. otitidis PS strain exerts its bactericidal effect by the generation of reactive oxygen species.
Keywords
Pseudomonas otitidis; antibiotic; bactericidal activity; siderophore;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Mollman U, Heinisch L, Bauernfeind A, Kohler T, Ankel-Fuchs D. 2009. Siderophores as drug delivery agents: application of the "Trojan Horse" strategy. Biometals 22: 615-624.   DOI
2 Braun V, Pramanik A, Gwinner T, Koberle M, Bohn E. 2009. Sideromycin: tools and antibiotics. Biometals 22: 3-13.   DOI
3 Ji C, Miller PA, Miller MJ. 2012. Iron Transport-mediated drug delivery: Practical syntheses and in vitro antibacterial studies of tris-catecholates siderophore-aminopenicillin conjugates reveals selectively potent anti-pseudomonal activity. J. Am. Chem. Soc. 134: 9898-9901.   DOI
4 Sheldon JR, Heinrichs DE. 2015. Recent developments in understanding the iron acquisition strategies of Gram positive pathogens. FEMS Microbiol. Rev. 39: 592-630.
5 Sang MK, Shrestha A, Kim DY, Park KS, Pak CH, Kim KD. 2013. Biocontrol of phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol. J. 29: 154-167.   DOI
6 Endicott NP, Lee E, Wencewicz TA. 2017. Structural basis for xenosiderophore utilization by the human pathogen Staphylococcus aureus. ACS Infect. Dis. 3: 542-553.   DOI
7 Philson SB, Llinas M. 1982. Siderochromes from Pseudomonas fluorescens. J. Biol. Chem. 257: 8081-8085.
8 Ankenbauer RG, Toyokuni T, Staley A, Rinehatr Jr. KL, Cox CD. 1988. Synthesis and biological activity of pyochelin, a siderophore of Pseudomonas aeruginosa. J. Bacteriol. 170: 5344-5351.   DOI
9 Adler C, Corbalan NS, Seyedsayamdost MR, Pomares MF, de Cristobal RE, Clardy J, et al. 2012. Catecholate siderophore protect bacteria from pyochelin toxicity. PLoS One 7: e46754.   DOI
10 Clark LL, Dajcs JJ, McLean CH, Bartell JG, Stroman DW. 2006. Psedomonas otitidis sp. nov., isolated from patients with otic infections. Int. J. Syst. Evol. Microbiol. 56: 709-714.   DOI
11 Wegner DL, Mathis CR, Neblett TR. 1976. Direct method to determine the antibiotic susceptibility of rapid growing blood pathogens. Antimicrob. Agent. Chemother. 9: 861-862.   DOI
12 Leisinger T, Margraff R. 1979. Secondary metabolites of the fluorescent pseudomonads. Microbiol. Rev. 43: 422-442.
13 Baron SS, Rowe JJ. 1981. Antibiotic action of pyocyanin. Antimicrob. Agent. Chemother. 20: 814-820.   DOI
14 Miethke M, Marahiel MA. 2007. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71: 413-451.   DOI
15 Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56.   DOI
16 Reeves M, Pine L, Neilands JB, Bullows A. 1983. Absence of siderophore activity in Legionella sp. grown in iron deficient media. J. Bacteriol. 154: 324-329.
17 Cox CD, Adams P. 1985. Siderophore activity of pyoverdine for Pseudomonas aeruginosa. Infect. Immun. 48: 130-138.
18 Howell CR, Stipanovic RD. 1980. Suppression of Pythium ultimum- induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotics, pyoluteorin. Phytopathology 70: 712-715.   DOI
19 Linda ST, David MW, Robert FB, Leland SP. 1990. Production of the antibiotic phenazin-1- carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56: 908-912.
20 Arima K, Imanaka H, Kousaka M, Fukuta A, Tamura G. 1964. Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric. Biol. Chem. 28: 575-576.   DOI
21 Cox CD, Rinehart Jr. KL, Moore ML, Cook Jr. JC. 1981. Pyochelin: Novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Pro. Natl. Acad. Sci. USA 78: 4256-4260.   DOI
22 Gillam A, Lewis AG, Anderson RJ. 1981. Quantitative determination of hydroxamic acid. Anal. Chem. 53: 841-844.
23 Shanahan P, O'Sullivan DJ, Simpson P, Glennon JD, O'Gara F. 1992. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58: 353-358.
24 Vandenbergh PA, Gonzales CF, Wright AM, Kunka BS. 1983. Ironchelating compounds produced by soil Pseudomonas: Correlation with fungal growth inhibition. Appl. Environ. Microbiol. 46: 128-132.
25 Cornelis P, Matthijs S. 2002. Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. 4: 787-798.
26 Roosenberg JM, Lin YM, Lu Y, Miller MJ. 2000. Studies and syntheses of siderophore, microbial iron chelators, and analogs as potential drug delivery agents. Curr. Med. Chem. 7: 159-197.   DOI