Browse > Article

Staphylococcus aureus Siderophore-Mediated Iron-Acquisition System Plays a Dominant and Essential Role in the Utilization of Transferrin-Bound Iron  

Park Ra Young (Research Center for Resistant Cells)
Sun Hui Yu (Research Center for Resistant Cells)
Choi Mi Hwa (Research Center for Resistant Cells)
Bai Young Hoon (Department of Biology, Chosun University)
Shin Sung Heui (Research Center for Resistant Cells)
Publication Information
Journal of Microbiology / v.43, no.2, 2005 , pp. 183-190 More about this Journal
Abstract
Staphylococcus aureus is known to be capable of utilizing transferrin-bound iron, via both siderophore­and transferrin-binding protein (named IsdA)-mediated iron-acquisition systems. This study was designed in order to determine which iron-acquisition system plays the essential or dominant role with respect to the acquisition of iron from human transfenin, in the growth of S. aureus. Holotransferrin (HT) and partially iron-saturated transferrin (PT), but not apotransferrin (AT), were found to stimulate the growth of S. aureus. S. aureus consumed most of the transferrin-bound iron during the exponential growth phase. Extracellular proteases were not, however, involved in the liberation of iron from transferrin. Transferrin-binding to the washed whole cells via IsdA was not observed during the culture. The expression of IsdA was observed only in the deferrated media with AT, but not in the media supplemented with PT or HT. In contrast, siderophores were definitely produced in the deferrated media with PT and HT, as well as in the media supplemented with AT. The siderophores proved to have the ability to remove iron directly from transferrin, but the washed whole cells expressing IsdA did not. In the bioassay, the growth of S. aureus on transferrin-bound iron was stimulated by the siderophores alone. These results demonstrate that the siderophore-mediated iron-acquisition system plays a dominant and essential role in the uptake of iron from transferrin, whereas the IsdA-mediated iron-acquisition system may play only an ancillary role in the uptake of iron from transferrin.
Keywords
Citations & Related Records

Times Cited By Web Of Science : 17  (Related Records In Web of Science)
Times Cited By SCOPUS : 13
연도 인용수 순위
1 Schwyn, B. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47-56   DOI   ScienceOn
2 Sebulsky, M.T. and D.E. Heinrichs. 2001. Identification and characterization of fhuD1 and fhuD2, two genes involved in ironhydroxamate uptake in Staphylococcus aureus. J. Bacteriol. 183, 4994-5000   DOI   ScienceOn
3 Sieradzki, K., R.B. Roberts, S.W. Haber, and A.Tomasz. 1999. The development of vancomycin resistance in a patient with methicillin- resistant Staphylococcus aureus infection. N. Engl. J. Med. 340, 517-523   DOI   ScienceOn
4 Braun, V. and M. Barun. 2002. Active transport of iron and siderophore antibiotics. Curr. Opin. Microbiol. 5, 194-201   DOI   ScienceOn
5 Lim, Y., S.Y. Cho, N.S. Cho, S.I. Lee, J.Y. Chung, C.H. Chung, and S.H. Shin. 2004. Oxygen stimulates the expression of ironrepressible high-affinity iron-uptake systems of Staphylococcus aureus-Application of CAS agar diffusion assay. Infection and Chemotherapy 36, 32-39
6 Crosa, J .H. 1997. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol. Mol. Biol. Rev. 61, 319-336   PUBMED
7 Dale, S.E., A. Doherty-Kirby, G. Lajoie and D.E. Heinrichs. 2004. Role of siderophore biosynthesis in virulence of Staphylococcus aureus: Identification and characterization of genes involved in production of a siderophore. Infect. Immun. 72, 29-37   DOI   ScienceOn
8 Lim, Y., S.H. Shin, S.I. Lee, I.S. Kim, and J.H. Rhee. 1998. Ironrepressibility of siderophore and transferrin-binding protein in Staphylococccus aureus. FEMS Microbiol. Lett. 163, 19-24   PUBMED
9 Lindsay, J.A. and T.V. Riley. 1994. Staphylococcal iron requirements, siderophore production, and iron-regulated protein expression. Infect. Immun. 62, 2309-2314   PUBMED
10 Modun, B.J., A. Cockayne, R. Finch, and P. Williams. 1998. The Staphylococcus aureus and Staphylococcus epidermidis transferrin-binding proteins are expressed in vivo during infection. Microbiology 144, 1005-1012   DOI   PUBMED   ScienceOn
11 Modun, B., D. Kendall, and P. Williams. 1994. Staphylococci express a receptor for human transferrin: Identification of a 42-kilodalton cell wall transferrin-binding protein. Infect. Immun. 62, 3850-3858   PUBMED
12 Modun, B. and P. Williams. 1999. The staphylococcal transferrinbinding protein is a cell wall glyceraldehydes-3-phosphate dehydrogenase. Infect. Immun. 67, 1086-1092   PUBMED
13 Potempa, J., A. Dubin, G. Korzus, and J. Travis. 1988. Degradation of elastin by a cysteine proteinase from Staphylococcus aureus. J. Biol. Chem. 263, 2664-2667   PUBMED
14 Sebulsky, M.T., D. Hohnstein, M.D. Hunter, and D.E. Heinrichs. 2000. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus. J. Bacteriol. 182, 4394-4400   DOI   ScienceOn
15 Cabrera, G., A. Xiong, M. Uebel, V.K. Singh, and R.K. Jayaswal. 2001. Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus. Appl. Environ. Microbiol. 67, 1001-1003   DOI   ScienceOn
16 Lim, Y., S.H. Shin, I.Y. Jang, J.H. Rhee, and I.S. Kim. 1998. A human transferrin-binding protein of Staphylococcus aureus is immunogenic in vivo and has an epitope in common with human transferrin receptor. FEMS Microbiol. Lett. 166, 225-230   DOI   ScienceOn
17 Dryla, A., D. Gelbmann, A. Von Gabain, and E. Nagy. 2003. Identification of a novel iron regulated staphylococcal surface protein with haptoglobulin-hemoglobin binding activity. Mol. Microbiol. 49, 37-53   DOI   ScienceOn
18 Clarke, S.R., M.D. Wiltshire, and S.J. Foster. 2004. IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesion. Mol. Microbiol. 51, 1509-1519   DOI   ScienceOn
19 Konetschny-Rapp, S., G. Jung, J. Meiwes, and H. Zahner. 1990. Staphyloferrin A: a structurally new siderophore from staphylococci. Eur. J. Biochem. 191, 65-74   DOI   ScienceOn
20 Rybak, M.J. and R.L. Akins. 2001. Emergence of methicillin-resistant Staphylococcus aureus with intermediate glycopeptide resistance: clinical significance and treatment options. Drugs 61, 1-7   PUBMED
21 Morrissey, J.A., A. Cockayne, P.J. Hill, and P. Williams. 2000. Molecular cloning and analysis of a putative siderophore ABC transporter from Staphylococcus aureus. Infect. Immun. 68, 6281-6288   DOI   ScienceOn
22 Courcol, R.J., D. Trivier, M.C. Bissinger, G.R. Martin, and M.R. Brown. 1997. Siderophore production by Staphylococcus aureus and identification of iron-regulated proteins. Infect. Immun. 65, 1944-1948   PUBMED
23 Shin, S.H., Y. Lim, S.E. Lee, N.W. Yang, and J.H. Rhee. 2001. CAS agar diffusion assay for the measurement of siderophores in biological fluids. J. Microbiol. Methods 44, 89-95   DOI   ScienceOn
24 Lindsay, J.A., T.V. Riley, and B.J. Mee. 1995. Staphylococcus aureus but not Staphylococcus epidermidis can acquire iron from transferrin. Microbiology 141, 197-203   DOI   ScienceOn
25 Martinaho, S., L. von Bonsdorff, A. Rouhiainen, M. Lonnroth and J. Parkkinen. 2001. Dependence of Staphylococcus epidermidis on non transferrin-bound iron for growth. FEMS Microbiol. Lett. 196, 177-182   DOI   ScienceOn
26 Okuzo, N., T. Akiyama, S. Miyoshi, S. Shinoda, and S. Yamamoto. 1996. Involvement of vulnibactin and exocellular protease in utilization of transferrin-and lactoferrin-bound iron by Vibrio vulnificus. Microbiol. Immunol. 40, 595-598   PUBMED
27 Leong, S.A. and J.B. Neilands. 1982. Siderophore production by phytopathogenic microbial species. Arch. Biochem. Biophys. 218, 351-359   DOI   ScienceOn
28 Trivier, D. and R.J. Courcol. 1996. Iron depletion and virulence in Staphylococcus aureus. FEMS Microbiol. Lett. 141, 117-127   DOI   PUBMED
29 Mazmanian, S.K., E.P. Skaar, A.H. Gaspar, M. Humayun, P. Gornicki, J. Jelenska, A. Joachmiak, D.M. Missiakas, and O. Schneewind. 2003. Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299, 906-909   DOI   PUBMED   ScienceOn
30 Conrad, M.E. 2001. Iron: seminal publications of the twentieth century-transferrin. J. Tra. Ele. Exp. Med. 14, 115-117   DOI   ScienceOn
31 Park, R.Y., H.Y. Sun, M.H. Choi, Y.H. Bae, and S.H. Shin. 2005. Growth of Staphylococcus aureus with defective siderophore production in human peritoneal dialysate solution. J. Microbiol. 43, 54-61
32 Modun, B., R.W. Evans, C.L. Joannou, and P. Williams. 1998. Receptor-mediated recognition and uptake of iron from human transferrin by Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 66, 3591-3596   PUBMED
33 Brock, J.H., P.H. Williams, J. Liceaga, and K.G. Woolridge. 1991. Relative availability of transferrin-bound iron and cell-driven iron to aerobactin-producing and enterochelin-producing strains of Escherichia coli and to other microorganisms. Infect. Immun. 59, 3185-3190   PUBMED
34 Brown, J.S. and D.W. Holden. 2002. Iron acquisition by Gram-positive bacterial pathogens. Microbes Infect. 4, 1149-1156   DOI   ScienceOn
35 Emori, T.G and R.P. Gaynes. 1993. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol. Rev. 6, 428-442   PUBMED
36 Taylor, J.M. and Heinrichs, D.E. (2002) Transferrin binding in Staphylococcus aureus: involvement of a cell wall-anchored protein. Mol. Microbiol. 43, 1603-1614   DOI   ScienceOn
37 Drechsel, H., S. Freund, G. Nicholson, H. Haag, O. Jung, H. Zahner, and G. Jung. 1993. Purification and chemical characterization of staphyloferrin B, a hydrophilic siderophore from staphylococci. Biometals 6, 185-192   PUBMED
38 Ratledge, C. and L. Dover. 2000. Iron metabolism in pathogenic bacteria, Ann. Rev. Microbiol. 54, 881-941   DOI   ScienceOn
39 Makey, D.G. and U.S. Seal. 1988. The detection of four molecular forms of human transferrin during the iron binding process. Biochem. Biophys. Acta 453, 250-256
40 Andrews, S.C., A.K. Robinson, and F. Rodriguez-Quinones. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215-237   DOI   ScienceOn
41 Bullen, J., E. Griffiths, H. Rogers, and G. Ward. 2002. Sepsis: the critical role of iron. Microbes Infect. 2, 409-415   DOI   ScienceOn
42 Skaar, E.P. and O. Schneewind. 2004. Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme. Microbes Infect. 6, 390-397   DOI   ScienceOn
43 Xiong, A., V.K. Singh, G. Cabrera, and R.K. Jayaswal. 2000. Molecular characterization of the ferric-uptake regulator, Fur, from Staphylococcus aureus. Microbiology 146, 659-668