• Title/Summary/Keyword: side-channel analysis

Search Result 360, Processing Time 0.027 seconds

Evaluation of Discharge Coefficients for Sharp Crested Side Weir in Wide Channel (폭이 넓은 개수로에서의 예연횡월류위어 유량계수 산정)

  • Lee, Dong Sop;Kim, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.449-458
    • /
    • 2008
  • This study is investigating experimentally the effect of upstream Froude number, weir height, weir length, and main channel width on the discharge coefficient of rectangular sharp crested side-weirs under subcritical flow conditions in a relatively wide rectangular open channel based on the De Marchi discharge coefficient $C_M$. The effects of four main influential parameters found by dimensional analysis, $Fr_1$, $h/y_1$, L/B, and $L/y_1$ are examined by the flume tests. New estimated equations for the discharge coefficients of sharp-crested side-weir are suggested based on the experimental results. The effect of $Fr_1$ for the discharge coefficient of sharp crested side weir is decreased in wide open channel and the relative importance of other influential parameters like $h/y_1$, L/B, and $L/y_1$ are increased. Also, the experimental results are compared with the results of other studies to extend the applicability of pre-suggested formulas for sharp-crested side-weir discharge coefficient.

A Pre-processing Technique for Performance Enhancement of the Differential Power Analysis Attack (차분 전력 분석 공격의 성능 향상을 위한 전처리 기법)

  • Lee, You-Seok;Lee, Yu-Ri;Lee, Young-Jun;Kim, Hyoung-Nam
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.4
    • /
    • pp.109-115
    • /
    • 2010
  • Differential Power Analysis (DPA) is well known as one of efficient physical side-channel attack methods using leakage power consumption traces. However, since the power traces usually include the components irrelevant to the encryption, the efficiency of the DPA attack may be degraded. To enhance the performance of DPA, we introduce a pre-processing technique which extracts the encryption-related parts from the measured power consumption signals. Experimental results show that the DPA attack with the use of the proposed pre-processing method detects correct cipher keys with much smaller number of signals compared to that of the conventional DPA attack.

A Study on Rekeying and Sponged-based Scheme against Side Channel Attacks (부채널 공격 대응을 위한 Rekeying 기법에 관한 연구)

  • Phuc, Tran Song Dat;Lee, Changhoon
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.579-586
    • /
    • 2018
  • Simple Power Analysis(SPA) and Differential Power Analysis(DPA) attacks are Side Channel Attacks(SCA) which were introduced in 1999 by Kocher et al [2]. SPA corresponds to attacks in which an adversary directly recovers key material from the inspection of a single measurement trace (i.e. power consumption or electromagnetic radiation). DPA is a more sophisticated attacks in which the leakage corresponding to different measurement traces (i.e. different plaintexts encrypted under the same key) is combined. Defenses against SPA and DPA are difficult, since they essentially only reduce the signal the adversary is reading, PA and DPA. This paper presents a study on rekeying and sponged-based approach against SCA with current secure schemes. We also propose a fixed ISAP scheme with more secure encryption and authentication based on secure re-keying and sponge functions.

Robust Deep Learning-Based Profiling Side-Channel Analysis for Jitter (지터에 강건한 딥러닝 기반 프로파일링 부채널 분석 방안)

  • Kim, Ju-Hwan;Woo, Ji-Eun;Park, So-Yeon;Kim, Soo-Jin;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1271-1278
    • /
    • 2020
  • Deep learning-based profiling side-channel analysis is a powerful analysis method that utilizes the neural network to profile the relationship between the side-channel information and the intermediate value. Since the neural network interprets each point of the signal in a different dimension, jitter makes it much hard that the neural network with dimension-wise weights learns the relationship. This paper shows that replacing the fully-connected layer of the traditional CNN (Convolutional Neural Network) with global average pooling (GAP) allows us to design the inherently robust neural network inherently for jitter. We experimented with the ChipWhisperer-Lite board to demonstrate the proposed method: as a result, the validation accuracy of the CNN with a fully-connected layer was only up to 1.4%; contrastively, the validation accuracy of the CNN with GAP was very high at up to 41.7%.

Development of Discharge Formula for Broad Crested Side Weir (광정횡월류위어의 월류량 산정식 개발)

  • Park, Moon-Hyung;Rhee, Dong-Sop
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.525-531
    • /
    • 2010
  • In this study, the effects of upstream Froude number ($Fr_1$), weir height (h), weir length (L), weir width (W) and main channel width (B) on the discharge coefficient of broad crested side-weirs in a relatively wide rectangular open channel were investigated experimentally. Furthermore the relationship between discharge coefficients of sharp crested side weir and broad crested side weir was studied using the concept of De Marchi discharge coefficient. The effect of $Fr_1$ on the relationship between discharge coefficients of sharp crested side weir and broad crested side weir is decreased in wide open channel and the relative importance of other influential parameters like h/$y_1$, L/B, and W/($y_1-h$) are increased. New estimated equations for the discharge coefficients of broad crested side weir are suggested from regression analysis with the experiment data sets.

측방향흐름이 있는 만곡부 흐름의 해석

  • Park, Jae-Hyeon;Yun, Seong-Yong
    • Water for future
    • /
    • v.25 no.3
    • /
    • pp.87-96
    • /
    • 1992
  • Hydraulic characteristics such as velocity, surface level and flow pattern in the curved channel are analyzed by model experiment, where model is scaled down by 1:20 for prototype channel containing side branch and curved section. The withdrawal of channel flow from channel is analyzed to find the effect on the curve section. The numerical scheme for shallow water equation using ADI method is verified through the comparison of hydrauric characteristics by experiment with that by numerical analysis in the side section of model channel. The comparison of numerical results with experimental data shows that velocity, surface level and flow pattern agree well for overall channel. Because fo the relative contraction of cross section in the curved section caused by rectangular system, the velocity calculated by numerical analysis is faster in curved section than that from experiment, which can be improved using finer spatial grid in curved section. The characteristics of the curved section such that the surface level is higher in the outer zone of curved section and the velocity is faster in the inner zone are well simulated by both experiment and numerical analysis. The effect of side branch reaches within the zone of the curved section.

  • PDF

Stability Analysis of Grid-Connected Inverters with an LCL Filter Considering Grid Impedance

  • Li, Xiao-Qiang;Wu, Xiao-Jie;Geng, Yi-Wen;Zhang, Qi
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.896-908
    • /
    • 2013
  • Under high grid impedance conditions, it is difficult to guarantee the stability of grid-connected inverters with an LCL filter designed based on ideal grid conditions. In this paper, the theoretical basis for output impedance calculation is introduced. Based on the small-signal model, the d-d channel closed-loop output impedance models adopting the converter-side current control method and the grid-side current control method are derived, respectively. Specifically, this paper shows how to simplify the stability analysis which is usually complemented based on the generalized Nyquist stability criterion (GNC). The stability of each current-controlled grid-connected system is analyzed via the proposed simplified method. Moreover, the influence of the LCL parameters on the stability margin of grid-connected inverter controlled with converter-side current is studied. It is shown that the stability of grid-connected systems is fully determined by the d-d channel output admittance of the grid-connected inverter and the inductive component of the grid impedance. Experimental results validate the proposed theoretical stability analysis.

Differential Side Channel Analysis Attacks on FPGA Implementations of ARIA (FPGA 기반 ARIA에 대한 차분부채널분석 공격)

  • Kim, Chang-Kyun;Yoo, Hyung-So;Park, Il-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.5
    • /
    • pp.55-63
    • /
    • 2007
  • This paper has investigated the susceptibility of an FPGA implementation of a block cipher against side channel analysis attacks. We have performed DPA attacks and DEMA attacks (in the nea. and far field) on an FPGA implementation of ARIA which has been implemented into two architectures of S-box. Although the number of needed traces for a successful attack is increased when compared with existing results on smart cards, we have shown that ARIA without countermeasures is indeed very susceptible to side channel analysis attacks regardless of an architecture of S-box.

Improve the Performance of Semi-Supervised Side-channel Analysis Using HWFilter Method

  • Hong Zhang;Lang Li;Di Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.738-754
    • /
    • 2024
  • Side-channel analysis (SCA) is a cryptanalytic technique that exploits physical leakages, such as power consumption or electromagnetic emanations, from cryptographic devices to extract secret keys used in cryptographic algorithms. Recent studies have shown that training SCA models with semi-supervised learning can effectively overcome the problem of few labeled power traces. However, the process of training SCA models using semi-supervised learning generates many pseudo-labels. The performance of the SCA model can be reduced by some of these pseudo-labels. To solve this issue, we propose the HWFilter method to improve semi-supervised SCA. This method uses a Hamming Weight Pseudo-label Filter (HWPF) to filter the pseudo-labels generated by the semi-supervised SCA model, which enhances the model's performance. Furthermore, we introduce a normal distribution method for constructing the HWPF. In the normal distribution method, the Hamming weights (HWs) of power traces can be obtained from the normal distribution of power points. These HWs are filtered and combined into a HWPF. The HWFilter was tested using the ASCADv1 database and the AES_HD dataset. The experimental results demonstrate that the HWFilter method can significantly enhance the performance of semi-supervised SCA models. In the ASCADv1 database, the model with HWFilter requires only 33 power traces to recover the key. In the AES_HD dataset, the model with HWFilter outperforms the current best semi-supervised SCA model by 12%.

Construction of Efficient and Secure Pairing Algorithm and Its Application

  • Choi, Doo-Ho;Han, Dong-Guk;Kim, Ho-Won
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.437-443
    • /
    • 2008
  • The randomized projective coordinate (RPC) method applied to a pairing computation algorithm is a good solution that provides an efficient countermeasure against side channel attacks. In this study, we investigate measures for increasing the efficiency of the RPC-based countermeasures and construct a method that provides an efficient RPC-based countermeasure against side channel attacks. We then apply our method to the well-known $\eta_T$ pairing algorithm over binary fields and obtain an RPC-based countermeasure for the $\eta_T$ pairing; our method is more efficient than the RPC method applied to the original $\eta_T$ pairing algorithm.