• Title/Summary/Keyword: shrinkage mechanism

Search Result 96, Processing Time 0.029 seconds

ENGINEERING CERAMICS의 평면연삭가공 특성에 관한 연구

  • 김호철;김원일;강재훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.136-144
    • /
    • 1992
  • Recently, Silicon Nitrde ceramic is regarded as the representative engineering ceramic with the excellent mechanical properties and many functions for mechanical components and parts among various kinds of ceramics in the mechanical industry. But, during the manufacturing of engineering ceramics, there is many volumetric shrinkage coupled with a distortion of the parts which is produced. Due to the requirement for high accuracy of size, form, and surface finish of the components, machining is needed surely. Nowdays, grinding with a resin bond type diamond wheels has been generally applied to machining of the engineering ceramics in the whole world because that it can be conveniently proceeded for workers to dress of tool and made with high reliability in producing factories among many bond type super-abrasive wheels yet. It is important task for attaining prescribed mechanical components with high reliability to observe the grinding mechanism of ceramics as like generation of cracks and chipping of material during process. Because they considerably effects on the strength characteristic of machined mechanical components. In this study, various surface grinding experiments using resin bond type diamond wheels are carried out for Silicon Nitride ceramic. Grinding mechanism of ceramics is observed experimentally and the relationship with various conditions is also attained. Form this experimental study, some useful machining data and information to determine proper machining condition for grinding of Silicon Nitride ceramic is obtained.

Mechanism and Application of NMOS Leakage with Intra-Well Isolation Breakdown by Voltage Contrast Detection

  • Chen, Hunglin;Fan, Rongwei;Lou, Hsiaochi;Kuo, Mingsheng;Huang, Yiping
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.402-409
    • /
    • 2013
  • An innovative application of voltage-contrast (VC) inspection allowed inline detection of NMOS leakage in dense SRAM cells is presented. Cell sizes of SRAM are continual to do the shrinkage with bit density promotion as semiconductor technology advanced, but the resulting challenges include not only development of smaller-scale devices, but also intra-devices isolation. The NMOS leakage caused by the underneath n+/P-well shorted to the adjacent PMOS/N-well was inspected by the proposed electron-beam (e-beam) scan in which VC images were compared during the in-line process step of post contact tungsten (W) CMP (Chemical Mechanical Planarization) instead of end-of-line electrical test, which has a long response time. A series of experiments based on the mechanism for improving the intra-well isolation was performed and verified by the inline VC inspection. An optimal process-integration condition involved to the tradeoff between the implant dosage and photo CD was carried out.

Growth Mechanism of SnO Nanostructures and Applications as an Anode of Lithium-ion Battery

  • Shin, Jeong-Ho;Park, Hyun-Min;Song, Jae-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.598-598
    • /
    • 2012
  • Rechargeable lithium-ion batteries have been considered the most attractive power sources for mobile electronic devices. Although graphite is widely used as the anode material for commercial lithium-ion batteries, it cannot fulfill the requirement for higher storage capacity because of its insufficient theoretical capacity of 372 mAh/g. For the sake of replacing graphite, Sn-based materials have been extensively investigated as anode materials because they can have much higher theoretical capacities (994 mAh/g for Sn, 875 mAh/g for SnO, 783 mAh/g for $SnO_2$). However, these materials generate huge volume expansion and shrinkage during $Li^+$ intercalation and de-intercalation and result in the pulverization and cracking of the contact between anode materials and current collector. Therefore, there have been significant efforts of avoiding these drawbacks by using nanostructures. In this study, we present the CVD growth of SnO branched nanostructures on Cu current collector without any binder, using a combinatorial system of the vapor transport method and resistance heating technique. The growth mechanism of SnO branched nanostructures is introduced. The SnO nanostructures are evaluated as an anode for lithium-ion battery. Remarkably, they exhibited very high discharge capacities, over 520mAh/g and good coulombic efficiency up to 50 cylces.

  • PDF

Effects of organic silicone additive material on physical and mechanical properties of mudstone

  • Chai, Zhaoyun;Kang, Tianhe;Chen, Weiyi
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.139-151
    • /
    • 2014
  • Mudstone is a very common rock that, when in contact with water, can exhibit considerable volume change and breakdown. This behavior of mudstone is frequently encountered in geotechnical engineering and has a considerable influence on infrastructure stability. This is particularly important in the present work, which focuses on mitigating the harmful properties of mudstone. The samples studied are of Permian Age mudstone from Shandong Province, China. Modification tests using organic silicone additive material were carried out. The mechanisms of physical properties modification of mudstone were comparatively studied using corresponding test methods, and the modification mechanism of organic silicone additive material acting on mudstone was analyzed. The following conclusions were drawn. The surface texture and characters of mudstone changed dramatically, surface character turns from hydrophilic to hydrophobic after organic silicone additive material modification. The changes in the surface character indicate a reduction in the water sensitivity of mudstone. After modification, the shape of porosity and fracture of mudstone changed unremarkable, and the total and free expansion ratios decreased obviously, whereas the strength increased markedly.

Analysis of the Void Growth Mechanism in Partial Frame Process (PFP성형공정의 기포성장 메카니즘에 관한 연구)

  • 안경현
    • The Korean Journal of Rheology
    • /
    • v.9 no.2
    • /
    • pp.60-65
    • /
    • 1997
  • PFP성형기술은 사출성형시 수지를 금형내에 환전히 채운후 저압의 공기를 이용하여 기포를 발생시켜 수지의 체적수축분을 기포의 성장에 의해 보상해주는 기술이다. 이방법은 일반 사출성형에서 많이 발생하는 싱크마크나 휨과 같은 변형문제를 해결하여 줄수 있으며 높은 압력을 필요로하지 않는다는 잇점을 가지고 있으나 이러한 최신공정에 대한 체계적인 연구는 미흡한 실정이다. 최근에 제시된 PFP성형공정의 모델링은 기포의 성장이 수지의 체 적수축에 의한 것이라는 가정을 근거로 기포핵이 생성된 이후의 기포성장을 모사하였으며 모델링에 해석결과는 몇가지 가정에도 불구하고 실험결과를 잘 설명하였다. 본 연구에서는 모델링이 가지는 문제점을 분석하고 기포성장의 메카니즘을 보다 체계적으로 이해하기 위하 여 실험적인 방법을 적용하였다. 많은 인자들을 효과적으로 고려하기 위하여 실험계획법을 적용하였으며 이를통하여 기포핵의 생성과 기포의 성장에 공기압 등이 매우 중요한 역할을 한다는 사실을 확인하였다. 이러한 결과는 모델링과 함께 PFP공정에 대한 체계적인 이해 뿐만 아니라 금형설계 및 성형조건의 설정등의 실제적인 문제해결에도 도움이 될것으로 기 대된다.

  • PDF

A Study on the Expansive Properties With Particle Size Distribution of Expansive Additives in Mortar (팽창제의 입도분포에 따른 팽창특성에 대한 기초연구)

  • 이종열;이웅종;박정준;박경상;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.151-156
    • /
    • 1998
  • Concrete structures is appeared the shrinkage after being harden of the hydration effect of cement. To overcome this disadvantage, expansive additives are used. In our country, the most popular expansive additives are hauyne(CSA) or free lime(free-CaO) systems. These expansive additives are used to expansive cement mortar or concrete materials. In this study, we analyzed the expansive property mechanism about the hydration reaction of the free lime systems and in particular we convinced size distributions of the free lime size affect the expansion ratio with expansion ratio with experiments. We carried out the experiment for the expansive properties by using the soundness molds and with various the humidity and dry setting conditions. The hydration reactions of the free lime affect the reaction properties according to the relative humidity by laboratory experiments.

  • PDF

Hampyong, Kyochon Clay-Its Characteristics and the Effects of Clay-organic Complexes on its. (함평, 교촌 점토의 특성과 점토-유기물 복합체에 관한 연구)

  • 정창주;백용혁;박현수
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.2
    • /
    • pp.95-103
    • /
    • 1977
  • Characteristics of Ham Pyong clay and clay-organic complexes were investigated by means of geological exploration, chemical analysis, X-ray diffraction, differential thermal analysis, electron microscopy, thermal mechanical analysis, cation exchange capacity and viscosity measurement. The results are as follows; 1) This caly is a transported clay which has black and white colors, and the amounts of deposit are estimated about 1, 600, 000M/T. 2) The major mineral phases identified by X-ray diffraction are kaolinite, sericite and halloysite and the minor phases are quartz and feldspar, these mineral phases can be seperated very easily by the elutriation method. 3) It was supposed that the black colored clay involved a certain clay-organic complexs by the mechanism of intercalation as well as surface absorption. 4) The clay-organic complexes in clay seemed to improve dispersity, to increase the fluidity of clay-water slips, to decrease the firing shrinkage and to promote the thermo-chemical reaction at temperature range up to 50$0^{\circ}C$, but not to effect on the resulted firing color.

  • PDF

Creep Mechanisms of Calcium-Silicate-Hydrate: An Overview of Recent Advances and Challenges

  • Ye, Hailong
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.453-462
    • /
    • 2015
  • A critical review on existing creep theories in calcium-silicate-hydrate (C-S-H) is presented with an emphasis on several fundamental questions (e.g. the roles of water, relative humidity, temperature, atomic ordering of C-S-H). A consensus on the rearrangement of nanostructures of C-S-H as a main consequence of creep, has almost been achieved. However, main disagreement still exists on two basic aspects regarding creep mechanisms: (1) at which site the creep occurs, like at interlayer, intergranular, or regions where C-S-H has a relatively higher solubility; (2) how the structural rearrangement evolutes, like in a manner of interlayer sliding, intra-transfer of water at various scales, recrystallization of gelled-like particles, or dissolution-diffusion-reprecipitation at inter-particle boundary. The further understanding of creep behavior of C-S-H relies heavily on the appropriate characterization of its nanostructure.

A Study on Sink Mark of Injection Molded Products (사출성형부품의 싱크마크에 관한 연구)

  • 서윤수;김영호;임동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.811-814
    • /
    • 1997
  • The injection molding process has been developed as a very important technology for the automotive and electric industries in recent years. But, in the injection molding products with rib-web structures, partial deformation by thermal volumetric shrinkage called Sink Mark, is occurred. In this study, to make explicitly characteristics of sink mechanism, an experimental approach was taken by using multi T-shaped mold cavity and FEM simulation. As a result, pressure on the packing process and the rib thickness are the most effective on sink mark depth. On the other hand, melt temperature has no effect on sink mark depth fot the same rib thickness.

  • PDF

A Study on the thermal behaviors of a machine tool with linear motors (리니어 모터를 적응한 공작기계의 열변형 특성에 관한 연구)

  • 김종진;조동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.36-40
    • /
    • 2002
  • The development of feed drive system with high speed and accuracy has been a major issue in the machine tool industry. Linear motors can be used as the efficient tool to achieve fast feed mechanism and high accuracy. However. a high speed feed drive system with linear motors can generate heat problems such as the variation of temperature distribution and the resultant thermal stress. In this paper, the important heat sources and the resultant thermal errors are presented. The thermal deformation characteristics of the machine tool with linear motors were identified, which are thermal expansion of linear scale, shrinkage, expansion and bending in the machine tool structure.

  • PDF