• Title/Summary/Keyword: shrinkage mechanism

Search Result 96, Processing Time 0.024 seconds

The Role of Grain Boundary Diffusion in the Activated Sintering of Tungsten Powder (텅스텐 활성소결에서 입계확산의 역할)

  • 이재성
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.79-84
    • /
    • 1994
  • The mechanism of activated sintering of tungsten powder was discussed in terms of diffusion and segregation of activator atoms at W grain boundaries. Shrinkage behaviours of W-0.2wt.% Ni, W-0.2wt.% Cu or pure W powder compacts during sintering at low temperatures of 900~ $1200^{\circ}C$ were investigated. It was found that the Cu additive inhibits sintering process causing lower densification than pure W compact while remarkable shrinkage occurred in the Ni added W powder. Such contrary effect was explained by comparing self diffusion processes along Ni or Cu segregated W boundaries in which Ni segregants enhance but Cu atoms retard the migration of W atoms at W boundaries.

  • PDF

A Study on the Sintering Behavior of Nanostructured W-30 wt%Cu Composite Powder by Dilatometry (Dilatometric 분석에 의한 나노구조 W-30 wt%Cu 복합분말의 소결거동연구)

  • 류성수
    • Journal of Powder Materials
    • /
    • v.7 no.2
    • /
    • pp.93-101
    • /
    • 2000
  • In order to clarify the enhanced sintering behavior of nanostructured(NS) W-Cu powder prepared by mechaincal alloying, the sintering behavior during heating stage was analysed by a dilatometry with various heating rates. The sintering of NS W-Cu powders was characterized by the densification of two stages, having two peaks in shrinkage rate curves. The temperature at which the first peak appear was much lower than Cu melting point, and dependent on heating rate. On the basis of the shrinkage rate curves and the microstructural observation, the coupling effect of nanocrystalline W-grain growth and the liquid-like behavior of Cu phase was suggested as a possible mechanism for the enhanced sintering of NS W-Cu powder in the state.

  • PDF

The Development of Cement Treated Base Material with Restraint Reflection Crack (반사균열을 억제한 시멘트 안정처리 기층 재료개발)

  • Kang, Sung-Cheul;Lee, Kang-Won;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.33-43
    • /
    • 2005
  • This paper describes a new approach to minimize the amount of shrinkage cracking in cement treated base(CTB). CTB is a stiffness base having lots of merits such as higher rutting resistance, minimizing fatigue cracking, and the ability to distribute upper loads. However, It is not applied to asphalt pavement system in Korea because of possible cracks caused by dry shrinkage. The goal of this study is the development of cement treated base with lower shrinkage for preventing reflection cracks and rutting. After identifying factors affecting dry shrinkage and analyzing mechanism of each admixture, the laboratory and field tests were designed and performed. Through the preliminary tests, the mix design containing 25 percent o( fly ash and 7 percent of cement was suggested. This mix design was satisfied with strength for Korea specification standard. According to the results considering strength, shrinkage, and economical efficiency, two mix designs were selected; 1) containing 25 percent of fly ash and 2) containing 25 percent of fly ash with 10 percent of expensive additive. For field test based on the result of laboratory test, the optimized alternative in cement treated base with lower shrinkage was the mix design containing 25 percent of fly ash with 10 percent of expansive additive.

  • PDF

Damage Mechanism of Asphalt Concrete under Low Temperatures

  • Kim, Kwang-Woo;Yeon, Kyu-Seok;Park, Je-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.200-204
    • /
    • 1994
  • Low temperature associated damage mechanism is not well known for asphalt concrete. Many studies have related the thermal cracking of pavement in the roadway in cold region with overall shrinkage of the pavement surface under assumption of homogeneous material. This study, however, was intiated based on the assumption that thermal incompatibility of materials (heterogeneous) in asphalt concrete mixture would be the primary cause of the damages. Acoustic emission technique and microscopic obsevation were employed to evaluate damage mechanism of asphalt concrete due to low temperature. The first method showed the sufficient evidence that asphalt concrete could be damaged by lowered temperature only. The second method showed that the damage by temperature resulted in micro-cracks at the interface between asphalt matrix and aggregate particle. It was concluded that these damage mechanisms were the primary cause of major thermal cracking of asphalt pavement in cold region.

  • PDF

Process-Structure-Property Relationship and its Impact on Microelectronics Device Reliability and Failure Mechanism

  • Tung, Chih-Hang
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • Microelectronics device performance and its reliability are directly related to and controlled by its constituent materials and their microstructure. Specific processes used to form and shape the materials microstructure need to be controlled in order to achieve the ultimate device performance. Examples of front-end and back-end ULSI processes, packaging process, and novel optical storage materials are given to illustrate such process-structure-property-reliability relationship. As more novel materials are introduced to meet the new requirements for device shrinkage, such under-standing is indispensable for future generation process development and reliability assessment.

Studies of the Crystallization through Volume Change from Bi-Sr-(Ca, Cd)-Cu-O Amorphous Materials (Bi-Sr-(Ca, Cd)-Cu-O 비정질체의 체적변화에 따른 결정화 과정 연구)

  • 한영희;성태현;한상철;이준성;정상진
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.51-53
    • /
    • 1999
  • The crystallization mechanism of an amorphous $Bi_{2}$$Sr_{2}$$Ca_{2 x}$$Cd_{x}$$Cu_{3}$$O_{y}$ phase were studied from the relations between crystallization and volume changes by dilatometry. Further, the effect of addition of CdO on the crystallization mechanism and superconductivity was discussed. The shrinkage of the amorphous $Bi_{2}$$Sr_{2}$$Ca_{2 x}$$Cd_{x}$$Cu_{3}$$O_{y}$ occurred with the crystallization of $Bi_{2}$$Sr_{2}$Cu$O_{6}$ phase decrease with increasing CdO content with a minimum at x=0.4. Better superconductivity was obtained in the specimens formation less amount of the$Bi_{2}$$Sr_{2}$Cu$O_{6}$ phase during the crystallization process.

  • PDF

A Study on the Solid State Diffusion Bonding of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 고상 확산접합에 관한 연구)

  • 강호정;강춘식
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.32-40
    • /
    • 1997
  • Solid state diffusion bonding is the joining process performed by creep and diffusion, which is accelerated by heating below melting temperature and proper pressing, in vacuum or shielding gas atmosphere. By this process we can obtain sufficient joint which can't be expected from the fusion welding. For Ti-6Al-4V alloy, the optimum solid state diffusion bonding condition and mechanical properties of the joint were found, and micro void morphology at bond interface was observed by SEM. The results of tensile test showed sufficient joint, whose mechanical properties are similar to that of base metal. 850$^{\circ}$C, 3MPa is considered as the optimum bonding condition. Void morphology at interface is long and flat at the initial stage. As the percentage of bonded area increases, however, small and round voids are found. Variation of void shape can be explained as follows. As for the void shrinkage mechanism, at the initial stage, power law creep is the dominant, but diffusion mechanism is dominant when the percentage of bonded area is increased.

  • PDF

Study on Properties of EPP Bead Foam (EPP 비드폼의 특성에 관한 연구)

  • Jung, Dong-Won;Lee, Eung-Kee;Park, Chul-B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.991-997
    • /
    • 2011
  • This paper deals with the basic principles and procedures involved in the steam-chest molding process used for manufacturing expanded polypropylene (EPP) bead foam. Steam-chest molding is an integral process for EPP technology. However, little research has been carried out on the processing conditions for steam-chest molding this process. The characteristics of EPP foam are energy absorption, multiple-impact protection, low weight, structural strength, and durability. In this study, the steam pressure in steam-chest molding was varied to determine the optimum conditions for manufacturing EPP foam. Moreover, annealing was performed after EPP-foam molding to prevent the shrinkage of the steam-molded product. It was possible to verify the mechanism of foam shrinkage by observing the change in weight with time at different annealing temperatures. Moreover, a tensile test and scanning electron microscopy (SEM) analysis were performed to support these experimental results. The dimensional stability of each molded product was investigated at different steam pressures.

Formation mechanism of scratches on ILD CMP (ILD CMP 공정중 발생하는 Scratch 발생기구에 관한 연구)

  • Kim, In-Gon;Choi, Jea-Gon;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.119-120
    • /
    • 2008
  • ILD CMP process has been well accepted for the planarization of the dielectric oxide film and becomes a critical process in ULSI manufacturing due to the rapid shrinkage of the design rule for the device. In total manufacturing process steps for a device, the proportion of ILD CMP process has been gradually increased. Ever since ILD CMP has been introduced, the scratches have been a major defects on polished surfaces which cause the electrical shorts between vias or metal lines [1,2]. It was reported that micro-scratches are caused by large, irregularly shaped particles during CMP process. Therefore, most of the CMP users have used < 5 m POU filter to remove and reduce the scratch source from the slurry. However, the scratch has always been the biggest concern in ILD polishing whatever preventive actions are taken. Silica and ceria slurries are widely used for ILD CMP process. There are not much differences in generated scratches and their formation mechanism. In this study, the scratches were investigated as a function of polishing conditions with possible explanation on formation mechanism in ILD CMP.

  • PDF

The Effects of PPF Fiber on Pore Structure of Concrete (PPF 섬유의 첨가가 콘크리트의 공극구조에 미치는 영향)

  • Han, Man Yop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1081-1089
    • /
    • 1994
  • Polypropylene Fibers have been used to increase the toughness of concrete and to increase the resistance to crack formation. However, there are many contradictory argument about the effectiveness of the fiber due to the lack of knowledge about the mechanism of fiber in concrete. One of the mechanism which changes the concrete properties on the addition of fiber is the change of the micropore structures. In this study, the change of pore structure due to the addition of fiber has been analysized by a permeability and a pore size distributuion test. The added fiber is found to provide a path for moisture movement, which increases drying shrinkage and pore size. It is found that the size of pores formed around the fiber ranges from $0.05{\mu}m$ to $5.0{\mu}m$.

  • PDF