Process-Structure-Property Relationship and its Impact on Microelectronics Device Reliability and Failure Mechanism

  • Published : 2003.09.01

Abstract

Microelectronics device performance and its reliability are directly related to and controlled by its constituent materials and their microstructure. Specific processes used to form and shape the materials microstructure need to be controlled in order to achieve the ultimate device performance. Examples of front-end and back-end ULSI processes, packaging process, and novel optical storage materials are given to illustrate such process-structure-property-reliability relationship. As more novel materials are introduced to meet the new requirements for device shrinkage, such under-standing is indispensable for future generation process development and reliability assessment.

Keywords

References

  1. C.H. Tung, C.K. Cheng, M.K. Radhakrishnan, and N.M. Iyer, Proceeding of the 9th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), 65-69, 2002 https://doi.org/10.1109/IPFA.2002.1025613
  2. K.L. Pey, C.H.Tung, M.K. Radhakrishnan, L.J. Tang, and W.H. Lin, 2003 IEEE International Reliability Physics Symposium (IRPS), March 30-April 3, Dallas Texas, USA, pp 584-585, 2003 https://doi.org/10.1109/RELPHY.2003.1197710
  3. S.S. Wong, C. Ryu, H. Lee, Proc. of the IEEE 1998 IITC, 107-, 1998
  4. S.W. Russel et al., Advanced Metallization and Interconnect systems for ULSI Applications in 1997, 289-, 1998
  5. B.Z. Li, T.D. Sullivan, T.C. Lee, Proc. International Reliability Physics Symp. (IRPS), 140-145, 2003
  6. A.V. Glasow, A.H. Fisher, D. Bunel, G. Friese, A. Hausmann, O. Heitzch, M. Hommel, J. Kriz, S. Penka, P. Raffin, C. Robin, H.-P. Sperlich, F. Ungar, A.E. Zitzelsberger, Proc. International Reliability Physics Symp. (IRPS), 146-150, 2003
  7. L.M. Gignac, K.P. Rodbell, C. Cabral, Jr., P.C. Andricacos, P.M. Rice, R.B. Beyers, P.S. Locke, and S.J. Klepeis, Materials Research Society Symposium Proceedings, Vol. 564, 373-, 1999
  8. J.M.E. Harper, C. Cabral Jr., P.C. Andricacos, L. Gignac, I.C. Noyan, K.P. Rodbell, and K.C. Hu, Materials Research Society Symposium Proceedings, Vol. 564, 387-, 1999
  9. L.J. Tang, K.L. Pey, C.H. Tung, M.K. Radhakrishnan, W.H. Lin, 10th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), 134-140, 2003
  10. K.N. Tu, Acta Metallurgica, 21, 347-, 1973 https://doi.org/10.1016/0001-6160(73)90190-9
  11. W. Mayer, M. Poate, K.N. Tu, Science, 190, 228-, 1975 https://doi.org/10.1126/science.190.4211.228
  12. K.N. Tu, Physical Review B, 49, 2030-, 1994 https://doi.org/10.1103/PhysRevB.49.2030
  13. B.Z. Lee, D.N. Lee, Acta Materialia, 46, 3701-, 1998 https://doi.org/10.1016/S1359-6454(98)00045-7
  14. George T.T. Sheng, C.F. Hu, W.J. Choi, K.N. Tu, Y.Y. Bong, L. Nguyen, Journal of Applied Physics, 92(1), 64-69, 2002 https://doi.org/10.1063/1.1481202
  15. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, Journal of Applied Physics, 69, 2849-2856, 1991 https://doi.org/10.1063/1.348620
  16. T. Kouzaki, Japanese Journal of Electron Microscopy, 49(1), 85-88, 2000 https://doi.org/10.1093/oxfordjournals.jmicro.a023796
  17. T. Kouzaki, K. Yoshioka, E. Ohno, Materials Research Society Symposium Proceedings, Vol. 480, 251-256, 1997